Опирание колонны на фундамент - RemontOtdelka23.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Опирание колонны на фундамент

В чем разница между шарнирным опиранием и жестким защемлением

Для многих начинающих проектировщиков основной проблемой является выбор расчетной схемы: где должны быть шарниры, а где – жесткие узлы? Как понять, что выгодней, и как разобраться, что вообще нужно в конкретном узле конструкции? Это очень обширный вопрос, надеюсь, данная статья немного внесет ясности в столь многогранный вопрос.

Что такое узлы опирания и обозначение этих узлов на схемах

Начнем с самой сути. Каждая конструкция должна иметь опору – как минимум она не должна упасть с высоты, на которой ей положено находиться. Но если копнуть глубже, для надежной работы элемента, нам мало запретить ему падать.

Как может сместиться любой элемент в пространстве? Во-первых, это может быть перемещение по одной из трех плоскостей – по вертикали (ось Z), по горизонтали (оси Х и У). Во-вторых, это может быть поворот элемента в узле вокруг тех же трех осей.

Таким образом, мы имеем целых шесть возможных перемещений (а если учесть еще и направление плюс-минус, то их не шесть, а двенадцать), которые еще называют степенями свободы – и это очень наглядное название. Если конструкция висит в воздухе (нереальная ситуация), то она полностью свободна, ничем не ограничена. Если в каком-то месте под ней появляется опора, не дающая перемещаться по вертикали, значит одна из степеней свободы у элемента в месте опоры ограничена по оси Z. Примером такого ограничения является свободное опирание металлической балки на гладкой, допускающей скольжение поверхности – она не упадет за счет опоры, но может при определенном усилии сдвинуться по оси Х и У, либо повернуться вокруг любой оси. Забегая вперед, уточним важный момент: если у элемента в узле не ограничен поворот, этот узел является шарнирным. Так вот, такой простейший шарнир с ограничением только по одной оси обозначается обычно следующим образом:

Расшифровать такое обозначение просто: кружочки означают наличие шарнира (т.е. отсутствие запрета поворота элемента в этой точке), палочка – запрет перемещения в одном направлении (обычно из схемы сразу становится понятно – в каком именно – в данном случае запрет по вертикали). Горизонталь со штриховкой условно обозначает наличие опоры.

Следующий вариант ограничения степеней свободы – это запрет перемещения в направлении двух осей. Для той же металлической балки это могут быть оси Z и Х, а по У она может переместиться при приложении к ней усилия; повороты ее, как видно, тоже ничем не ограничены.

Как вообще представить отсутствие ограничения поворотов? Если эту балку попытаться закрутить вокруг собственной оси (допустим, опереть на нее перекрытие только с одной стороны – тогда под весом перекрытия балка начнет крутиться), то ничто не помешает этому кручению, балка по всей длине начнет опрокидываться под действием крутящей силы. Точно также если в центре балки приложить вертикальную нагрузку, балка изогнется и в местах опирания свободно повернется вокруг оси У (слева – по часовой стрелке, справа – против). Вот это мы и понимаем как шарнир.

Допустим, есть жесткий узел опирания балки в раме, который обеспечен путем приварки балки к колонне. Но сварной узел рассчитан неверно и шов не выдерживает приложенного усилия и разрушается. Балка продолжает опираться на колонну, но уже может повернуться на опоре. При этом кардинально меняется эпюра изгибающих моментов: на опорах моменты стремятся к нулю, зато пролетный момент возрастает. А балка была рассчитана на защемление и не готова к восприятию возросшего момента. Так и происходит разрушение. Поэтому жесткие узлы всегда должны быть рассчитаны на максимально возможную нагрузку.

Такой шарнир обозначается следующим образом.

Слева и справа обозначения равноценны. Справа оно более наглядное: 1 – горизонтальный стержень ограничен в узле в перемещении по вертикали (вертикальная палочка с кружочками на концах) и по горизонтали (горизонтальная палочка с кружочками на концах); 2 – вертикальный стержень также ограничен в узле в перемещении по вертикали и по горизонтали. Слева также очень распространенное обозначение точно такого же шарнира, только палочки расположены в виде треугольника, но то, что их две, означает, что ограничение перемещений идет по двум осям – вдоль оси элемента и перпендикулярно его оси. Особо ленивые товарищи могут вообще не рисовать кружочки, и обозначать такой шарнир просто треугольником – такое тоже встречается.

Теперь рассмотрим, что же означает классическое обозначение шарнирно опирающейся балки.

Это балка, имеющая две опоры, а в левой еще и ограниченная в перемещении по горизонтали (если бы этого не было, система не была бы устойчивой – есть такое условие в сопромате – у стержня должно быть три ограничения перемещений, в нашем случае два ограничения по Z и одно по Х). Конструктор должен продумать, как обеспечить соответствие опирания балки расчетной схеме – об этом никогда нельзя забывать.

И последний случай для плоской задачи – это ограничение трех степеней свободы – двух перемещений и поворота. Выше было сказано, что для любого элемента степеней свободы шесть (или двенадцать), но это для трехмерной модели. Мы же обычно в расчете рассматриваем плоскую задачу. И вот мы пришли к ограничению поворота – это классическое понятие жесткого узла или защемления – когда в точке опирания элемент не может ни сдвинуться, ни повернуться. Примером такого узла может служить узел заделки сборной железобетонной колонны в стакан – она настолько глубоко замоноличена, что возможности как сместиться, таки и повернуться у нее нет.

Глубина заделки у такой колонны строго расчетная, но даже по виду мы не можем представить, что колонна на рисунке слева сможет повернуться в стакане. А вот правая колонна – запросто, это явный шарнир, и так конструировать защемление недопустимо. Хотя и там, и там колонна погружена в стакан и паз заполнен бетоном.

Больше вариантов защемления будет по ходу статьи. Сейчас разберемся с обозначением защемления. Оно классическое, и особого разнообразие в отличии от шарниров здесь не наблюдается.

Слева показан горизонтальный элемент, защемленный на опоре, справа – вертикальный.

И напоследок – о шарнирных и жестких узлах в рамах. Если узел соединения балки с колонной жесткий, то он показывается либо без условных обозначений вообще, либо с закрашенным треугольничком в углу (как на верхних двух рисунках). Если же балка опирается на колонны шарнирно, на концах балки рисуются кружочки (как на нижнем рисунке).

Как законструировать шарнирный или жесткий узел

Опирание плит, балок, перемычек.

Первое, что следует запомнить при конструировании узлов – зачастую шарнир от защемления отличает глубина опирания.

Если плита, перемычка или балка опирается на глубину, равную или меньшую высоте сечения, и при этом не выполнено никаких дополнительных мероприятий (приварка к закладным элементам, препятствующая повороту и т.п.), то это всегда чистый шарнир. Для металлических балок считается шарнирным опирание на 250 мм.

Если опирание больше двух – двух с половиной высот сечения элемента, то такое опирание можно считать защемлением. Но здесь есть нюансы.

Во-первых, элемент должен быть пригружен сверху (кладкой, например), причем веса этого пригруза должно быть достаточно, чтобы воспринять усилие в элементе на опоре.

Во-вторых, возможно другое решение, когда поворот элемента ограничивается путем приварки к закладным деталям. И здесь нужно четко разбираться в особенностях конструирования жестких узлов. Если балка или приварена внизу (такое часто встречается и в металлоконструкциях, и в сборном железобетоне – к закладным в опоре привариваются закладные в балке или плите), то это никак не мешает ей повернуться на опоре – это лишь препятствует горизонтальному перемещению элемента, об этом мы говорили выше. А вот если верхняя часть балки надежно заанкерена сваркой на опоре (это либо рамные узлы в металле, либо ванная сварка верхних выпусков арматуры в сборных ригелях – в жестких узлах каркаса, либо сварка закладных элементов в узлах опирания балконных плит, которые обязательно должны быть защемлены, т.к. они консольны), то это уже жесткий узел, т.к. явно препятствует повороту на опоре.

Читайте также:  Строительство фундамента зимой

На рисунке ниже выбраны шарнирные и жесткие узлы из типовых серий (серия 2.440-1, 2.140-1 вып. 1, 2.130-1 вып. 9). По ним наглядно видно, что в шарнирном узле крепление идет внизу балки или плиты, а в жестком – вверху. Уточнение: в узле опирания плиты анкер не дает жеского узла, это гибкий элемент, который лишь препятствует горизонтальному смещению перекрытия.

Но законструировать узел правильно – это полдела. Нужно еще сделать расчет всех элементов узла, выдержат ли они максимальное усилие, передаваемое от элемента. Здесь нужно рассчитать и закладные детали, и сварные швы, и проверить кладку в случае, если пригруз от нее учитывается при конструировании.

Соединение колонн с фундаментами.

При опирании металлических колонн определяющим фактором является количество болтов и то, как законструирована база колонны. О металле здесь я распространяться не буду, т.к. это не мой профиль. Напишу только, что если в фундаменте для крепления колонны лишь два болта, то это стопроцентный шарнир. Также если стойка приваривается к закладной детали фундамента через пластину, это тоже шарнир. Остальные случаи подробно приведены в литературе, есть узлы в типовых сериях – в общем, информации много, здесь запутаться сложно.

Для сборных железобетонных колонн используется их жесткая заделка в стакан фундамента (об этом речь шла выше). Если вы откроете «Пособие по проектированию фундаментов на естественном основании под колонны зданий и сооружений», там вы сможете найти расчет всех элементов этого жесткого узла и принципы его конструирования.

При шарнирном узле колонна (столб) просто опирается на фундамент безо всяких дополнительных мероприятий или заделана в неглубокий стакан.

Соединение монолитных конструкций.

В монолитных конструкциях жесткий узел или шарнир всегда определяется наличием правильно заанкеренной арматуры.

Если на опоре арматура плиты или балки не заведена в конструкцию опоры на величину анкеровки или даже нахлестки, то такой узел считается шарнирным.

Так на рисунке ниже показаны варианты опирания монолитных плит из Руководства по конструированию ЖБК. Рисунок (а) и (б) – это жесткое соединение плиты с опорой: в первом случае верхняя арматура плиты заводится в балку на длину анкеровки; во втором – плита защемляется в стене также на величину анкеровки рабочей арматуры. Рисунок (в) и (г) – это шарнирное опирание плиты на балку и на стену, здесь арматура заведена на опору на минимально допустимую глубину опирания.

Рамные узлы соединения монолитных ригелей и колонн в железобетоне выглядят еще серьезней, чем опирание плит на балки. Здесь верхняя арматура ригеля заводится в колонну на величину одной и двух длин анкеровки (половина стержней заводится на одну длину, половина – на две).

Если в узле железобетонного каркаса арматура и балки, и колонны проходит насквозь и дальше идет больше чем на длину анкеровки (например, какой-то средний узел), то такой узел считается жестким.

Чтобы соединение колонн с фундаментом было жестким, из фундаментов должны быть сделаны выпуски достаточной длины (не менее величины нахлестки, подробнее – в Руководстве по конструированию), и эти же выпуски должны быть заведены в фундамент на длину анкеровки.

Аналогично в свайном ростверке – если длина выпусков из сваи меньше, чем длина анкеровки, соединение ростверка со сваей жестким считаться не может. Для шарнирного соединения длину выпусков оставляют 150-200 мм, больше не желательно, т.к. это будет пограничное состояние между шарниром и жестким узлом – а ведь расчет делался как для чистого шарнира.

Если нет места для того, чтобы разместить арматуру на длину анкеровки, проводят дополнительные мероприятия – приварку шайб, пластин и т.п. Но такой элемент должен быть обязательно рассчитан на выкалывание (что-то вроде расчета анкеров закладных деталей, его можно найти в Пособии по проектированию ЖБК).

Также на тему шарниров и защемления можно прочитать здесь.

Опирание колонны на фундамент

СТАЛЬНОЙ КАРКАС ОДНОЭТАЖНЫХ ЗДАНИЙ – ЧАСТЬ 3

Опирание колонны на подколонник бетонного фундамента, крайней надопорной стойки и стро­пильной фермы — на оголовок крайней колонны, средней надопорной стойки со стропильной и под­стропильной фермой — на оголовок средней колон­ны, подкрановой балки — на консоль рядовой или крайней колонны, рядовых и ендовных прогонов — на стропильные фермы охарактеризовано при опи­сании соответствующих конструкций. Ниже даются краткие пояснения, сопоставляющие и обобщаю­щие принципы конструирования основных узлов стального каркаса.

При опирании колонн на бетонный фундамент предусматривается подливка опорной плиты це­ментным раствором марки 400. Она компенсирует возможные неточности при бетонировании обреза фундамента и обеспечивает полное примыкание к нему опорной плиты. В траверсах предусматрива­ются отверстия для стока дождевой воды, попада ющей на опорную плиту при монтаже здания.

Передача нагрузок на колонну от разрезных подкрановых балок, стропильных и подстропиль­ных ферм происходит в расчетных плоскостях через приторцованные опорные ребра, положение кото­рых фиксируется установочными болтами.

В ряде случаев (крепление верхнего пояса раз­резных подкрановых балок к шейке колонны, на­веска стеновых панелей и тому подобное) крепеж­ные элементы допускают некоторое смещение кон­струкций, происходящее от воздействия временных или постоянных нагрузок.

В месте восприятия сосредоточенных усилий сечения элементов колонн и ферм усиливаются до­полнительными ребрами и накладками. Большинство соединений выполняется на черных болтах с последующей монтажной сваркой.

Крепление прогонов к верхнему поясу стропиль­ной фермы фиксируется опорными коротышами из уголков.

Стальные стропильные фермы с уклоном верх­него пояса 1 : 3,5 предназначены для перекрытия однопролетных бесфонарных, неотапливаемых складских помещений с кровлей из волнистых ас-бестоцементных листов. Склады оборудуются под­весными однобалочными кранами грузоподъемно­стью до 5 т или опорными кранами грузоподъем­ностью до 30 т. Фермы треугольного очертания с горизонталь­ным нижним поясом пролетом 18; 24; 30 и 36 м выполняются в соответствии с длиной кровельных волнистых асбестоцементных листов с узловой пе­редачей нагрузки через 1,25 м. Нагрузка переда­ется расположенными по верхнему поясу стальны­ми прогонами, к которым крепятся кровельные листы.

Стержни фермы и прогоны изготовляются из горячекатаных профилей стали марки «сталь 3», распорки на опорах стропильных ферм — из сталь­ного облегченного гнутого профиля по ГОСТ 8278—75. При использовании в прогонах облегчен­ных профилей взамен горячекатаных достигается экономия стали около 3 кг на 1 м 2 покрытия.

Заводские и монтажные узлы треугольных ферм, за исключением опорного, аналогичны опи­санным выше полигональным фермам. Опорный узел предусматривает различные варианты привяз­ки колонн. При больших нагрузках узловая фасонка опорного узла увеличивается в пределах край­ней панели и усиливается наклонными ребрами. Ферма опирается строганой поверхностью опор­ного ребра на стальной оголовок колонны и закреп­ляется на нем посредством болтов и монтажной сварки. В зданиях с опорными или подвесными кранами нижние пояса ферм развязываются связями так же, как и в зданиях с тяжелым режимом работы.

Стальные стропильные фермы полигонального очертания из электросварных труб запроектирова­ны в типовом исполнении для пролетов 18, 24 и 30 м. Высота на опоре в осях стержней у ферм всех указанных пролетов 2,9 м. Нижний пояс го­ризонтален, верхний имеет уклон 1,5%. Проекция длины панели (расстояния между узлами) по верхнему поясу 3 м. Незначительный эксцентриси­тет решетки предусмотрен для удобного сочленения труб в бесфасоночных узлах. Номинальная длина стропильных ферм на 400 мм менее пролета зда­ния. Крайние панели укорочены на 200 мм для размещения надопорных стоек. В местах подвески кранов решетка усиливается дополнительными стержнями в виде обоймы из двух швеллеров.

Лист 2.12, Связи по стальным колоннам

Фермы пролетом 18 м поставляются одной от­правочной маркой; фермы пролетом 24 и 30 м — двумя отправочными марками с монтажным сты­ком по оси симметрии.

Надопорные стойки имеют высоту сечения: крайние 200 мм + привязка, средние 2X200 мм, Они конструируются из двутавров соответствующе­го профиля. Высота надопорных стоек складывает­ся из высоты ферм 2900 мм, высоты подъема оси нижнего пояса над оголовком колонны 280 мм и высоты подъема плоскости опирания прогонов над осью верхнего пояса ферм 120 и 200 мм соответ­ственно при диаметрах труб верхнего пояса до 127 мм и более. Отсюда полная высота надопор­ных стоек 3300 или 3380 мм. Плоскость опирания прогонов фиксируется опорными столиками, раз­мещенными в узлах стропильных ферм.

Читайте также:  Класс бетона для фундамента

Подстропильные фермы треугольного очерта­ния крепятся непосредственно к стенкам двутав­ров средних надопорных стоек. Отсюда их номи­нальная длина на 10 мм менее шага колонн. Сред­ние стойки подстропильных ферм выполнены из прокатного двутавра с подвеской в виде сварного двутавра. Для опирания стропильных ферм на отметке верха колонн эта подвеска снабжена дву­мя столиками.

Стропильные фермы из электросварных труб могут располагаться с шагом 12 м, перекрываемым решетчатыми прогонами. Они рассчитаны на облег­ченную конструкцию крыш из стального профили­рованного настила с утеплителем из пенополисти-рола (расчетная нагрузка до 400 кгс/см 2 ).

Распорки и связи выполняются также из труб­чатых элементов.

Все монтажные узлы на опорах ферм крепят­ся болтами М20 и М24 нормальной точности с последующей сваркой. Для осуществления болто­вых соединений трубчатые элементы сплющивают­ся и завариваются либо в них ввариваются на концах плоские фасонки с ребрами жесткости и заглушками. К поясам ферм привариваются от­крылки. Для образования монтажного допуска в соответствующих местах предусматривается устрой­ство овальных отверстий.

Покрытия с фермами из электросварных труб отличаются от аналогичных покрытий с фермами из горячекатаных профилей относительной просто­той конструкции. Стержни ферм, связей и распо­рок цельные, узлы бесфасоночные. Соответственно сокращаются их заводская и построечная трудо­емкость и удельный расход стали.

Тема: Типы стальных колонн, их опирание на фундамент

Вертикальные несущие элементы стального каркаса называют колон­нами. В колоннах различают сле­дующие части:

-оголовок, воспринимающий на­грузку от вышележащих конструк­ций;

-стержень (ствол), имеющий надкрановую и подкрановую часть;

-башмак, передающий нагрузку на фундамент.

1)по месту положению;

– для крайних и средних рядов

2)по конструкций ствола;

– постоянного и переменного сечения

3)по сечения стержня

– сплошные и сквозные.

Колонны постоянного сечения (Рис 18) представляют собой прокатные или сварные двутавры с консолями для опирания подкрановых балок. Их устанавливают в зданиях высотой 8,4 и 9,6 и т.д. метра. Высоту колонн среднего ряда уменьшают на 700мм.

Сквозные (двухветвевые) колонны (Рис 19), предназначенные для зданий с высотой этажа 10,8 – 18м.

Оборудована консолями под краны грузоподъёмностью до 125тонн. Над крановая часть колонны выполняется из сварного двутавра.

Подкрановая состоит из двух ветвей в 3-ёх вариантах:

1)ширина сечения до 400мм, наружная ветвь из прокатного швеллера и двутавра.

2)при ширине сечения 400 -600мм из гнутого швеллера и прокатного двутавра.

3)при ширине сечения более 600мм из гнутого швеллера и прокатного двутавра.

Подкрановая часть колонны переходит в базу.

База состоит из опорной плиты и траверс на которые ложатся плиты с анкерными болтами утопленными в бетон. Решётка подкрановой части колонны двухплоскостная из прокатных уголков. По сечению дополнительно выполняются диафрагмы, не реже чем через 4 раскоса по высоте. Операние на фундамент осуществляют через слой цементно-песчаного раствора или бетона на мелком заполнителе.

Рисунок 18. Стальные колонны постоянного сечения

а — для крайних рядов; б — для средних рядов; 1 — железобетонный фундамент;

2 — анкерные болты диаметром 20—56 мм; 3 — анкерная плита; 4 — ствол колонны;

5 — подкрановая консоль; 6 — оголовок;

7 — отверстия для болтов; 8 — траверса башмака; 9— опорная плита;

10 — надопорная стойка (при подстропильных фер­мах)

Рисунок 19. Стальные двухветвевые колонны

а — для крайних рядов; б — для средних рядов; 1 — база (башмак); 2— подкрановая часть;

3— надкрановая ветвь; 4 — оголовок; 5 — ребра жесткости; 6 — подкрановая травер­са; 7 — решетка из уголков; 8 — анкерный болт; 9 — анкер­ная плитка; 10 — траверса башмака

Тема: Металлические подкрановые балки.

1)Двутаровые балки (Рис 20,а, б) применяются в пролётах 6 – 12м, грузоподъёмностью в кранах до 200тонн, сечение может быть:

– симметричным или ассиметричным, с уширенным верхним поясом.

Высота от 600 до 2050мм. Выполняются из прокатного металла сварными из стальных листов или тавров соединённых листовой сеткой. По статической работе подкрановые балки делят на:

-разрезные подкрановые балки, разрезные стыкуются на опорах.

-неразрезные подкрановые балки стыкуются в четверти пролёта. Вертикальную стенку балок пролётом 24м (Рис 20, в) усиливают с обеих сторон горизонтальными рёбрами.

Могут быть по длине постоянное сечение и могут состоять из различных сечений.

2)Решётчатые балки (20, г) пролёты от 18м и более применяют при кранах грузоподъёмность 20 -30тонн. Верхний пояс балки – прокатный или сварной двутавр, нижняя часть – треугольная решетка из уголков.

3)Подкраново-подстропильные фермы (Рис 20, д) устраиваются в зданий пролётом 36 и более метров под тяжёлые краны. Они одновременно являются опорами для стропильных ферм.

4)Тормозные балки и фермы (Рис 21) обеспечивают устойчивость подкрановых балок и воспринимают тормозные усилия мостовых кранов. Закрепляются к поясам подкрановых балок и в верху приваривается стальной лист для прохода вдоль подкрановых путей. При шаге колонн 6 м верхние пояса подкрановых ба­лок связывают тормозными балками только в связевых шагах колонн. При шаге колонн 12 м при устрой­стве проходов при кранах грузоподъ­емностью более 75 т по всей длине подкрановых балок устанавливают тормозные фермы. При тяжёлом режиме работы кранов к подкрановым балкам средних колонн приваривают крестовые связи.

5)Крановые пути для кранов грузоподъёмностью до 20тонн крановые пути из железнодорожных рельсов (Рис 22) закреплённых планками с вертикальными рёбрами. Для крапов грузоподъемностью свыше 20 т укладывают рельсы ти­па КР-50 до КР-140, закрепляемые болтами с прижимными лапками. Концевые упоры приваривают к подкрановой балке и снабжают брусчатым амортизатором.

Расчёт узла сопряжения колонн с фундаментом

Рубрика: Технические науки

Дата публикации: 28.05.2015 2015-05-28

Статья просмотрена: 10313 раз

Библиографическое описание:

Абрашитов В. С., Жуков А. Н., Алмаметов Э. Х. Расчёт узла сопряжения колонн с фундаментом // Молодой ученый. — 2015. — №11. — С. 213-217. — URL https://moluch.ru/archive/91/19612/ (дата обращения: 28.01.2020).

Одной из основных задач при проектировании стальных рамных каркасов многопролётных зданий является закрепление колонны в фундаменте, обеспечивающее восприятие поперечной и продольной сил, а также изгибающего момента расчетной величины при основном и особом сочетании нагрузок.

В соответствии с расчётной схемой металлического каркаса многопролётного здания имеется в узлах соединения колонны с фундаментом либо шарнирное, либо жёсткое сопряжение (рис.1).

Рис.1. Узел соединения колонны с фундаментом

При анализе проектной документации нескольких зданий для Пензы и Пензенской области выявлено, что соединение металлической колонны из прокатного двутавра с железобетонным столбчатым фундаментом осуществляется через металлическую базу из плиты базы и четырёх анкерных болтов (рис. 2). Причём анализируемые проекты имели здания с несколькими пролетами и высотой не менее трёх этажей. Соединения несущих балок с колонной осуществлено по шарнирной схеме. Естественно, что при определении усилий в элементах поперечной рамы необходимо было вводить жёсткое соединение фундамента с колонной в виде жёсткого закрепления, так как в противном случае система становится статически изменяемой (при шарнирном соединении колонн с фундаментом). В рабочей же документации показывается узел соединения колонны с фундаментом через плоскую плиту и четыре анкерных болта.

Рис. 2. Соединение колонн с железобетонным фундаментом

Вместе с тем базы колонн имеют закрепления нижнего конца в фундаменте либо шарнирное, либо жёсткое. Причём если колонны центрально сжаты, то крепления их к фундаментам можно осуществлять непосредственно за опорную плиту болтами, чаще всего двумя и иногда четырьмя, которые условно можно назвать монтажными. При этом такое закрепление называют шарнирным, так как на плиту базы не действует изгибающий момент (М=0). Анкерные болты должны воспринимать изгибающие моменты и работать, как правило, на растяжение, что приводит к тому, что база проектируется с наличием распределительных траверс по схеме на рис.3, то есть жёсткой.

Читайте также:  Нагрузка на почву от фундамента

Рис. 3. Жёстко опёртая база внецентренно-сжатой колонны

Напряжение под плитой базы колонны определяется в зависимости от величины значений N и M по формуле:

,

где В — ширина плиты базы, а L — длина базы.

Значения этих напряжений могут быть разные в виде схем (рис.4):

Рис.4 Эпюры нагружения

Анализируя оба варианта эпюр нагружения, можно сказать, что по первому варианту болты не работают на растяжение и их условно можно назвать монтажными, так как они работают на сжатие.

По второму варианту контактная зона плиты с фундаментом не может воспринимать растягивающие напряжения и растягивающие усилия, воспринимаемые анкерными болтами. Сила, которую воспринимают анкерные болты, определяется из условия статического равновесия системы по формуле:

,

где M и N — расчётные усилия для фундаментной плиты; — сила, которую воспринимают анкерные болты; a — расстояние от центра тяжести плиты базы до центра тяжести эпюры сжатых напряжений под плитой базы; y — расстояние от анкерных болтов до центра тяжести эпюры сжатых напряжений.

Чем меньше будет значение продольной силы и больше значение изгибающего момента, тем больше будет значение силы . Выполняя соединение колонны с плитой базы по рисунку 1 это соединение в технической литературе [1], [2], [3] всегда считалось шарнирно опёртым. Тем не менее, имеется техническое решение по типовой серии 1.423.3–8 вып.2, когда базу колонн проектируют без траверс для бескаркасных зданий, в зданиях с подвесным транспортом и с мостовыми кранами общего назначения грузоподъемностью до 5 тс. Такая плита базы должна быть рассчитана на изгиб по схеме на рис.5.

Рис.5 Схема грузовой площади при расчёте плиты базы на изгиб от отпора фундамента на плиту

Расчет плиты ведут по следующей методике, описанной в [5]:

Толщину опорной плиты следует определять расчетом на изгиб пластинки по формуле

(1)

где Мmax — наибольший из изгибающих моментов М, действующих на разных участках опорной плиты и определяемых по формулам:

1) для консольного участка плиты

(2)

2) для участка плиты, опертого на четыре стороны в направлении короткой и длинной сторон соответственно

(3)

3) для участка плиты, опертого по трем сторонам

(4)

для участка плиты, опертого на две стороны, сходящиеся под углом, по формуле (4), принимая при этом d1 — диагональ прямоугольника, а размер а1 в таблице Е.2 [5]- расстояние от вершины угла до диагонали. Здесь с — вылет консольного участка плиты;

α1, α2, α3 — коэффициенты, зависящие от условий опирания и отношения размеров сторон участка плиты и принимаемые согласно таблице Е.2 [5]; q — реактивный отпор фундамента под рассматриваемым участком плиты на единицу площади плиты.

При этом площадь стальной опорной плиты должна удовлетворять требованиям расчета на прочность фундамента. Передача расчетного усилия на опорную плиту может осуществляться через фрезерованный торец или через сварные швы конструкции, опирающейся на плиту [5].

В связи с этим необходимо рассчитать сварной шов, прикрепляющий плиту базы к сплошной колонне, применяя для этого формулу:

, (5)

где — момент сопротивления расчётного сечения сварного соединения по металлическому шву.

Данная формула применяется, если значение ; то есть расчёт ведётся по металлу шва, а не по металлу границы сплавления (см. [5]).

Только если толщина плиты и сварные соединения колонны с плитой удовлетворяют вышеуказанным расчётам, можно считать соединение колонн с фундаментом по рисунку 1 условно жёстким и в расчётах опорный узел принимать жёстким. При проверке несущей способности уже изготовленных рам с устройством соединения колонн с фундаментом по типу рис. 1 без траверс нельзя считать соединения жесткими.

1. Металлические конструкции. Под ред. Н. С. Стрелецкого, М., 1961.

2. Муханов К. К. Металлические конструкции. М. Строиздат, 1967.

3. Васильев А. А. Металлические конструкции. М. Строиздат, 1975.

4. Металлические конструкции. Справочник проектировщика, Т. 2. Под ред. В. В. Кузнецова, М., 2011.

5. СП. 16. 13330. 2011. Стальные конструкции. Актуализированная редакция. СНиП II-23–81*. М., 2011.

ИХ ОПИРАНИЕ НА ФУНДАМЕНТ

ОБЛАСТЬ ПРИМЕНЕНИЯ

Пространственную систему ме­таллических конструкций, образо­ванную колоннами, подкрановыми балками, фермами, прогонами и связями, называют стальным карка­сом. Основой каркаса (рис. 41) слу­жат поперечные рамы, состоящие из колонн и стропильных ферм. Прост­ранственная жесткость каркаса обеспечивается укладкой подкрано­вых балок, прогонов и связей между поперечными рамами.

Элементы каркаса изготовляют из малоуглеродистых, низколегированных,

и высокопрочных сталей. Со­пряжение элементов стального кар­каса осуществляют на болтах, свар­ке и заклепках (при значительных динамических нагрузками Отсеки стальных каркасов по длине через 230 и 200 м (в неотапливаемых зда­ниях) и при ширине соответственно через 150 и 120 м разделяют дефор­мационными швами.

Каркасы одноэтажных промыш­ленных зданий с пролетами 18, 24, 30 и 36 м и шагом колонн 6 и 12 м возводят из типовых металлических конструкций

Стальные каркасы допускаются, в следующих случаях:

1.при ‘Высоте одноэтажных зданий более 14,4 м;

2.при грузоподъемности кранов 50 т и более;

3.при пролетах здания 30 м и бо­лее, а в не отапливаемых зданиях — 18,м и более;

4.при двухъярусном расположении кранов; 5.при высоких дина­мических нагрузках 6.при строи­тельстве в труднодоступных райо­нах.

ТИПЫ СТАЛЬНЫХ КОЛОНН,

Вертикальные несущие элементы стального каркаса называют колон­нами.В колоннах различают сле­дующие части:

оголовок, воспринимающий на­грузку от вышележащих конструкций;

стержень (ствол), имеющий надкрановую и подкрановую часть;

башмак, передающий нагрузку на фундамент.

Стальные колонныразличают по следующим признакам:

1.по местоположению – длят край­них и средних рядов;

2.по конструкции ствола – по­стоянного и переменного (ступенча­того) сечения;

3.по сечению стержня – сплошные и сквозные (из отдельных ветвей, соединенных раскосами или план­ками).

Колонны постоянного сечения (рис. 42) представляют собой про­катные сварные двутавры с консо­лями для опирания подкрановых балок. Их устанавливают в бескра­новых или крановых зданиях высо­той 8,4 и 9,6 м (при грузоподъемно­сти кранов до 20 т). Высоту колонн среднего ряда (при укладке под­стропильных ферм) уменьшают на 700 мм. В уровне подкрановых путей у колонн (с высотой стенки 900 мм) устраивают лазы размером 400Х XI900 мм.

Ступенчатые (двухветвевые) колонны (рис. 43) предназна­чены для зданий с высотой этажа 10,8—18 м, оборудо­ванных кранами грузоподъ­емностью до 125 т. Надкрановая часть колонны (шей­ка) выполняется из сварно­го двутавра, подкрановая состоит из двух ветвей, сое­диненных решеткой. На уступ подкрановой ветви опирают подкрановые бал­ки. Подкрановую часть двухветвевых колонн, в зависи­мости от высоты сечения, выполняют из прокатных швеллеров и двутавров (при сечении до 400 мм), а также из гнутых швеллеров и дву­тавров прокатных или свар­ных (при сечениях 400— 650 мм).

Раскосы и горизонталь­ные стержни связывают вет­ви подкрановой части ко­лонны. Ветви через четыре панели по высоте усиливают горизонтальными стальными листами (диафрагмами).

Башмаки стальных ко­лонн крепят к анкерным болтам, заделанным в же­лезобетонный фундамент. Опирание осуществляют че­рез слой цементно-песчаного раствора или бетона на мел­ком заполнителе. Конструк­ция башмака зависит от се­чения колонны и характера нагрузки (центральная, внецентренная). Башмаки ко­лонн сплошных и решетча­тых (при небольшом рас­стоянии между ветвями) имеют общую базу:

на одной плите (рис. 44, б);

на плите, усиленной ребра­ми (рис. 44,а):

на плите, усиленной попе­речными траверсами (рис. 44,в).

Большинство двухветвевых внецентренно-сжатых колонн (рис. 43) имеет раз­дельную базу.

Торец стержня колонны фрезеруют и опирают на строганую поверхность опорной стальной плиты. Ребра и тра­версы приваривают к опорной плите и стволу колонны.

В зависимости от высоты травер­сы нижний торец колонны распола­гают на отметке 0,6 или 0,9 м. За­глубленную часть колонны для за­щиты от коррозии бетонируют. Для опирания наружных стен (рис. 44,в) на обрезы фундаментов укладывают фундаментные балки.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9612 – | 7391 – или читать все.

95.47.253.202 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Ссылка на основную публикацию