Как подключить теплообменник к системе отопления - RemontOtdelka23.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Как подключить теплообменник к системе отопления

Пластинчатый теплообменник для горячего водоснабжения

Обеспечить себе в доме или квартире горячее водоснабжение можно многими способами и непосредственный нагрев, например прямоточным электронагревателем или бойлером – не самый эффективный способ. В простоте и надежности отлично зарекомендовал себя пластинчатый теплообменник ГВС. Если есть источник тепла, например автономное отопление или даже централизованное, то тепло для нагрева воды вполне разумно взять от них, не тратя дорогостоящее электричество для этих целей.

Устройство и принцип работы

Пластинчатый теплообменник (ПТО) обеспечивает переход тепла от нагретого теплоносителя холодному, при этом не перемешивая их, развязывая два контура между собой. Теплоносителем может быть пар, вода или масло. В случае с горячим водоснабжением чаще источником тепла является теплоноситель системы отопления, а нагреваемой средой – холодная вода.

Конструктивно теплообменник представляет собой группу гофрированных пластин, собранных параллельно друг другу. Между ними образуются каналы, по которым течет теплоноситель и нагреваемая среда, притом послойно они чередуются между собой, не перемешиваясь при этом. За счет чередования слоев, по которым текут жидкости обоих контуров, увеличивается площадь теплообмена.

Схема работы теплообменника

Гофрирование чаше выполняется в виде волн, притом ориентированных так, чтобы каналы одного контура располагались под углом к каналам второго контура.

Подключение входов и выходов делаются так, чтобы жидкости текли навстречу друг другу.

Поверхность и материал пластин подбирается исходя из требуемой мощности теплообмена, вида теплоносителя. В особенно эффективных и продуманных теплообменниках поверхность формуется для возбуждения завихрений возле поверхности пластины, повышая теплообмен, не создавая сильного сопротивления общему току.

Теплообменник включается между двумя контурами:

  1. Последовательно к системе отопления или параллельно с наличием регулирующей арматуры.
  2. К входу от холодного водопровода и выходом к потребителю ГВС.

Холодная вода, протекая через теплообменник нагревается за счет тепла от системы отопления до требуемой температуры и подается на кран потребителя.

Основные характеристики пластинчатого теплообменника:

  • Мощность, Вт;
  • Максимальная температура теплоносителя, оС;
  • Пропускная способность, производительность, литры/час;
  • Коэффициент гидравлического сопротивления.

Мощность зависит от общей площади теплообмена, перепада температур в обоих контурах между входов и выходом и даже от числа пластин.

Максимальная температура задается подбором материалов и способом соединения пластин и корпуса теплообменника.

Пропускная способность повышается с увеличением числа пластин, так как они подключаются фактически параллельно, то каждая новая пара пластин добавляет дополнительный канал для тока жидкости.

Коэффициент гидравлического сопротивления важен при расчете нагрузки на систему отопления, где от этого зависит выбор циркуляционного насоса, немаловажен и для других источников тепла. Зависит от типа гофрирования пластин и размера сечения каналов и их количества.

Для наиболее востребованных случаев, каким является обеспечение горячей водой частного хозяйства, дома или квартиры производятся готовые теплообменники с постоянными характеристиками.

Расчет

Выбор подходящего теплообменника сложно выполнить, оперируя только одной лишь его мощностью или пропускной способностью. Эффективность подготовки ГВС зависит и от состояния теплоносителя в первом контуре и во втором, от материала и конструкции теплообменника, скорости и массовой части теплоносителя, проходящего в единицу времени через пластинчатый теплообменник. Однако, естественно следует предварительно выполнить расчет, позволяющий прийти к определенному сочетанию мощности и производительности для выбора подходящей модели.

Базовые данные необходимые для расчета:

  • Тип среды в обоих контурах (вода-вода, масло-вода, пар-вода)
  • Температура теплоносителя в системы отопления;
  • Максимально допустимое снижение температуры теплоносителя после прохождения теплообменника;
  • Начальная температура воды, используемой для ГВС;
  • Требуема температура ГВС;
  • Целевой расход горячей воды в режиме максимального потребления.

Кроме этого в формулах для расчета задействована удельная теплоемкость жидкости в обоих контурах. Для ГВС используется табличное значение для начальной температуры воды, чаще +20оС, равное 4,182 кДж/кг*К. Для теплоносителя следует отдельно находить значение удельной теплоемкости, если в его составе имеется антифриз или другие присадки для улучшения его качеств. Аналогично для централизованного отопления берется приблизительное значение или фактическое на основании данных теплокоммунэнерго.

Целевой расход определяется количеством пользователей для горячей воды и количеством устройств (краны, посудомоечная и стиральная машинка, душ), где она будет использована. Согласно требованиям СНиП 2.04.01-85 необходимы следующие значения расхода горячей воды:

  • для раковины – 40 л/ч;
  • ванная – 200 л/ч;
  • душевая – 165 л/ч.

Значение для раковины умножается на количество устройств в доме, которые могут использоваться параллельно, и складывается со значением для ванны или душевой в зависимости от того, что именно используется. Для посудомоечной и стиральной машинки значения берутся из паспорта и инструкции и только при условии, что они поддерживают использование горячей воды.

Второе базовое значение – это мощности теплообменника. Рассчитывается исходя из полученного значения расхода жидкости и разницы температур воды на входе в теплообменник и на выходе.

где m – расход воды, С – удельная теплоемкость, Δt – разница температур воды на входе и выходе ПТО.

Для получения массового расхода воды следует расход, выраженный в л/ч умножить на плотность воды 1000 кг/м3.

КПД теплообменников оценивается на уровне 80-85%, и многое зависит от конструкции самого оборудования, так что полученное значение следует разделить на 0,8(5).

С другой стороны ограничением по мощности будет расчет, выполненный со стороны первого контура с теплоносителем, где, используя уже разницу допустимых температур для системы отопления, получаем максимально допустимый забор мощности. Конечный результат будет компромиссом между двумя полученными значениями.

Если забора мощности для нагрева нужного количества горячей воды не хватает, то разумнее использовать две ступени подогрева и, соответственно, два теплообменника. Мощность распределяется между ними поровну от требуемого расчета. Одна ступень выполняет предварительный нагрев, используя в качестве источника тепла обратку отопления с пониженной температурой. Второй ПТО уже нагревает окончательно воду за счет горячей воды с подачи отопления.

Схема обвязки

Подключают теплообменник к системе отопления несколькими способами. Самый простой вариант с параллельным включением и наличием регулировочного клапана, работающего от термоголовки.

Обязательными являются запорные шаровые вентили на всех выводах теплообменника, чтобы иметь возможность полностью перекрыть доступ жидкости и обеспечить условия для демонтажа оборудования. Регулировкой мощности и, соответственно, нагревом горячей воды должен заниматься клапан с управлением от термоголовки. Клапан устанавливается на подводящую трубу от отопления, а датчик температуры на выход контура ГВС.

При цикличной организации ГВС с наличием накопительной емкости устанавливается дополнительно тройник на входе нагреваемого контура для включения холодной водопроводной воды и обратки по ГВС. Избежать ненужного тока в обратном направлении в ветке горячей и холодной воды не даст обратный клапан.

Недостатком этой схемы является сильно завышенная нагрузка на систему отопления и неэффективный нагрев воды во втором контуре при большем перепаде температур.

Гораздо продуктивнее и надежнее работает схема с двумя теплообменниками, двухступенчатая.

1 – пластинчатый теплообменник; 2 – регулятор температуры прямого действия: 2.1 – клапан; 2.2 – термостатический элемент; 3 – циркуляционный насос ГВС; 4 – счетчик горячей воды; 5 – электро-контактный манометр (защита от «сухого хода»)

Читайте также:  Всеядный котел отопления длительного горения

Идея заключается в использовании двух теплообменников. В первой ступени используется с одной стороны обратка системы отопления, а с другой холодная вода из водопровода. Это дает предварительный нагрев примерно на 1/3 или половину от необходимой температуры, при этом не страдает обогрев дома. Включение контура выполняется последовательно с байпасом, на котором уже закреплен игловой вентиль, с помощью которого регулируется объем теплоносителя.

Второй ПТО, вторая ступень, подключаемая параллельно системе отопления – это с одной стороны подача горячего теплоносителя от котла или котельной, а с другой уже подогретая на первой ступени вода ГВС.

Регулировкой первой ступени заниматься нет нужды. Устанавливаются лишь шаровые вентили на все четыре отвода и обратный клапан на подачу холодной воды.

Обвязка второй ступени идентичная параллельному подключению за исключением того, что вместо холодной воды подключается уже подогретая вода с первой ступени.

В каких случаях нужен теплообменник для систем отопления

Особенности подключения к системе горячего водоснабжения

Если для сушилки полотенец используется отдельный отвод (последовательное подключение к системе горячего водоснабжения), а вода из него выводится через источники внутри квартиры, то установка полотенцесушителя на горячую воду проводится без дополнительных работ. Но при таком подключении сушки для полотенец снижается температура горячей воды. Его обычно используют в небольших домах.

Цены на сушилки разного типа в магазине

Чаще устройство подключается к водопроводу, заменяя часть стояка, такое можно увидеть в ванной в панельном доме. При установке полотенцесушителя на стояк горячего водоснабжения необходима дополнительная страховка в виде байпаса.

Пластинчатые теплообменники области применения

Пластинчатые теплообменники применяются в системе отопления дома, горячего водоснабжения, в системах кондиционирования в больших коттеджах, школах, садах, бассейнах, в целых микрорайонах, а также в системе отопления домов сельской местности. Широкое применение пластинчатые теплообменники нашли в пищевой промышленности.

Теплообменники для отопления имеют ряд неоспоримых преимуществ по сравнению с остальными устройствами, используемыми для создания подходящего микроклимата.

Подобные отопительные приборы обладают рядом преимуществ над другими видами.

Положительные качества

Среди основных положительных качеств устройства, обеспечивающего отопление, можно отметить следующие:

  • высокий уровень компактности;
  • пластинчатые теплообменники имеют высокий коэффициент теплопередачи;
  • коэффициент тепловых потерь максимально низкий;
  • потери давления находятся на минимальном уровне;
  • выполнение монтажно-наладочных, ремонтных и изоляционных работ требует низких финансовых затрат;
  • при возможном засорении это устройство может быть разобрано, очищено и собрано обратно всего двумя рабочими уже через 4-6 часов;
  • имеется возможность добавить мощность пластинам.

Кроме того, благодаря своей простоте подключение теплообменника к системе отопления может быть осуществлено просто на полу в тепловом пункте или на обычной несущей конструкции блочного теплового пункта. Отдельно стоит отметить низкий уровень загрязняемости поверхности теплообменника, что вызвано высокой турбулентностью потока жидкости, а также благодаря качественной полировке используемых теплообменных пластин. На сегодняшний срок эксплуатации уплотнительной прокладки у ведущих европейских производителей составляет не менее 10 лет. Срок же службы пластин составляет 20-25 лет. Стоимость замены уплотнительной прокладки может составлять 15-25% от общей стоимости всего агрегата.

Очень важно, что после проведения детального расчета конструкцию современного пластинчатого теплообменника можно изменить под необходимые и указанные в техническом задании характеристики (вариативность конструкции и изменяемость задачи). Абсолютно все пластинчатые теплообменники устойчивы к высокому уровню вибрации

У современных аппаратов системы отопления последствия возможных гидроударов сведены практически к нулю.

Из чего состоит современный теплообменник

Теплообменник современного типа состоит из нескольких частей, каждая из которых играет свою важную роль:

  • неподвижной плиты, к которой присоединяются все подводимые патрубки;
  • прижимной плиты;
  • теплообменных пластин со вставленными прокладками уплотнительного типа;
  • верхней и нижней направляющих;
  • задней стойки;
  • шпилек с резьбой.

На данном изображении представлен кожухотрубный теплообменник.

Благодаря такой уникальной конструкции теплообменник способен обеспечивать наиболее эффективную компоновку всей поверхности используемого теплообменника, что дает возможность создавать небольшой по габаритам аппарат отопления. Абсолютно все пластины в собранном пакете одинаковы, только часть из них развернута к другой под углом в 180 градусов. Именно поэтому во время необходимого стягивания всего пакета должны образовываться каналы. Именно через них во время процесса нагрева и протекает рабочая жидкость, принимающая участие в теплообмене. Благодаря такой компоновке элементов системы достигается правильное чередование каналов.

На сегодняшний день можно смело утверждать, что теплообменники пластинчатого типа из-за своих технических характеристик являются более популярными. Ключевой элемент любого современного теплообменника — это теплопередающие пластины, которые изготавливаются из стали, не подверженной коррозии, толщина пластин находится в диапазоне от 0,4 до 1 мм. Для изготовления используется высокотехнологичный метод штамповки.

Во время работы пластины прижимаются друг к другу, образуя тем самым щелевые каналы. Лицевая сторона каждой из таких пластин имеет специальные канавки, куда специально устанавливается резиновая контурная прокладка, которая обеспечивает полную герметичность каналов. Всего имеется четыре отверстия, два из них необходимы для обеспечения подвода и отвода нагреваемой среды к каналу, а два другие отвечают за предотвращение случаев перемешивания греющей и нагреваемой сред. На случай прорыва одного из малых контуров пластинчатые теплообменники защищены дренажными пазами.

Если имеет место большая разница в расходе сред и совсем небольшое отличие в конечных температурах, то есть возможность многократно использовать теплообменный процесс, который будет происходить через петлеобразное направление потоков.

Двухступенчатая последовательная схема.

Сетевая
вода разветвляется на два потока: один
проходит через регулятор расхода РР, а
второй через подогреватель второй
ступени, затем эти потоки смешиваются
и поступают в систему отопления.

При
максимальной температуре обратной воды
после отопления 70ºС
и
средней нагрузке горячего водоснабжения
водопроводная вода практически
догревается до нормы в первой ступени,
и вторая ступень полностью разгружается,
т.к. регулятор температуры РТ закрывает
клапан на подогреватель, и вся сетевая
вода поступает через регулятор расхода
РР в систему отопления, и система
отопления получает теплоты больше
расчетного значения.

Если
обратная вода имеет после системы
отопления температуру 30-40ºС
, например, при плюсовой температуре
наружного воздуха, то подогрева воды в
первой ступени недостаточно, и она
догревается во второй ступени. Другой
особенностью схемы является принцип
связанного регулирования. Сущность его
состоит в настройке регулятора расхода
на поддержание постоянного расхода
сетевой воды на абонентский ввод в
целом, независимо от нагрузки горячего
водоснабжения и положения регулятора
температуры. Если нагрузка на горячее
водоснабжение возрастает, то регулятор
температуры открывается и пропускает
через подогреватель больше сетевой
воды или всю сетевую воду, при этом
уменьшается расход воды через регулятор
расхода, в результате температура
сетевой воды на входе в элеватор
уменьшается, хотя расход теплоносителя
остается постоянным. Теплота, недоданная
в период большой нагрузки горячего
водоснабжения, компенсируется в периоды
малой нагрузки, когда в элеватор поступает
поток повышенной температуры. Снижение
температуры воздуха в помещениях не
происходит, т.к. используется
теплоаккумулирующая способность
ограждающих конструкций зданий. Это и
называется связанным регулированием,
которое служит для выравнивания суточной
неравномерности нагрузки горячего
водоснабжения. В летний период, когда
отопление отключено, подогреватели
включаются в работу последовательно с
помощью специальной перемычки. Эта
схема применяется в жилых, общественных
и промышленных зданиях при соотношении
нагрузок
Выбор схемы зависит от графика центрального
регулирования отпуска теплоты: повышенный
или отопительный.

Читайте также:  Гидравлическая стрелка для систем отопления

Преимуществом
последовательной
схемы по сравнению с двухступенчатой
смешанной является выравнивание
суточного графика тепловой нагрузки,
лучшее использование теплоносителя,
что приводит к уменьшению расхода воды
в сети. Возврат сетевой воды с низкой
температурой улучшает эффект теплофикации,
т.к. для подогрева воды можно использовать
отборы пара пониженного давления.
Сокращение расхода сетевой воды по этой
схеме составляет (на тепловой пункт)
40% по сравнению с параллельной и 25% — по
сравнению со смешанной.

Недостаток
– отсутствие возможности полного
автоматического регулирования теплового
пункта.

Зависимая схема с трёхходовым клапаном и циркуляционными насосами

Зависимая схема подключения теплового пункта системы отопления к источнику тепла с трёхходовым клапаном регулятора теплового потока и циркуляционно-смесительными насосами в подающем трубопроводе системы отопления.

Данную схему в ИТП применяют при соблюдении условий:

1 Температурный график работы источника тепла (котельной) превышает либо равен температурному графику системы отопления. Тепловой пункт подключённый по данной принципиальной схеме может работать как с подмесом к подаче потока из обратного трубопровода, так и без него, то есть пустить теплоноситель из подающего трубопровода тепловой сети напрямую в систему отопления.

Например расчётный температурный график системы отопления 90/70°C, равен температурному графику источника, но источник независимо от внешних факторов всё время работает с температурой на выходе 90°C, а для системы отопления подавать теплоноситель с температурой в 90°C нужно лишь при расчётной температуре наружного воздуха (для Киева -22°C). Таким образом в тепловом пункте к воде, поступающей от источника будет подмешиваться остывший теплоноситель из обратного трубопровода пока температура наружного воздуха не опустится до расчётного значения.

2 Подключение теплового пункта выполнено к безнапорному коллектору, гидравлической стрелке или теплотрассе с разницей давлений между подающим и обратным трубопроводом не более 3м.вод.ст..

3 Давление в обратном трубопроводе источника тепла в статическом и динамическом режимах превышает как минимум на 5м.вод.ст высоту от места подключения теплового пункта до верхней точки системы отопления (статику здания).

4 Давление в подающем и обратном трубопроводе источника тепла, а также статическое давление в тепловых сетях не превышают максимально допустимого давления для системы отопления здания подключённой к данному ИТП.

5 Схема подключения теплового пункта должна обеспечивать автоматическое качественное регулирование системой отопления по температурному или временному графику.

Описание работы схемы ИТП с трёхходовым клапаном

Принцип работы данной схемы схож с работой первой схемы за исключением того, что трёхходовым клапаном может быть полностью перекрыт отбор из обратного трубопровода, при котором весь теплоноситель, поступающий от источника тепла без подмеса будет подан в систему отопления.

В случае полного перекрытия подающего трубопровода источника тепла, как и в первой схеме, в систему отопления будет подаваться только вышедший из неё теплоноситель, отбираемый из обрата.

Зависимая схема с трёхходовым клапаном, циркуляционными насосами и регулятором перепада давления.

Применяется при перепаде давления в месте подключения ИТП к тепловой сети превышающем 3м.вод.ст.. Регулятор перепада давления в данном случае подбирается для дросселирования и стабилизации располагаемого напора на вводе.

Как подключить теплообменник к системе отопления

Мы постарались представить в этом разделе общую информацию, предназначенную преимущественно для проектировщиков. О том какие бывают схемы подключения теплообменников ГВС, их преимущества и недостатки, как совместить две ступени в моноблок, расположение патрубков, и некоторые другие вопросы освещены в этом разделе. Свои пожелания и предложения по улучшению статьи направляйте This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Итак, рассмотрим основные схемы подключения теплообменников ГВС к тепловым сетям. Также некоторую информацию Вы можете почерпнуть из статьи, расположенной в разделе Скачать.

Существуют 3 основные схемы присоединения:

Рассмотрим каждую схему по отдельности:

1. Параллельная. Обязательна установка регулятора температуры.

Подключение теплообменника ГВС по параллельной схеме (с циркуляцией)


+ самая простая и наиболее дешевая схема;

+ занимает мало места;

– не экономичная схема (нет подогрева холодной воды);

Расположение патрубков на теплообменнике см. раздел Схемы сборки

1 – пластинчатый теплообменник;

2 – регулятор температуры прямого действия:

2.2 – термостатический элемент;

3 – циркуляционный насос ГВС;

4 – счетчик горячей воды;

5 – электро-контактный манометр (защита от «сухого хода»)

2. Двухступенчатая смешаная. Обязательна установка регулятора температуры.

Подключение теплообменника ГВС по двухступенчатой смешаной схеме

+ экономичная схема, т.к. используется тепло обратной воды после системы отопления в теплообменнике 1 ступени;

– почти в 2 раза дороже параллельной;

– специфика при подборе теплообменников;

Расположение патрубков на теплообменнике см. раздел Схемы сборки

1 – пластинчатый теплообменник;

2 – регулятор температуры прямого действия:

2.2 – термостатический элемент;

3 – циркуляционный насос ГВС;

4 – счетчик горячей воды;

5 – электро-контактный манометр (защита от «сухого хода»)

С целью удешевления этой схемы возможно применение теплообменника – моноблока, который объединяет в себе 1 и 2 ступени:

Подключение теплообменника ГВС по двухступенчатой смешаной схеме (моноблок)


+ экономичная схема, т.к. используется тепло обратной воды после системы отопления в теплообменнике 1 ступени;

+ занимает мало места;

– Несколько дороже параллельной, но существенно дешевле (1ст + 2ст);

– специфика при подборе теплообменников;

Расположение патрубков на теплообменнике см. раздел Схемы сборки

1 – пластинчатый теплообменник;

2 – регулятор температуры прямого действия:

2.2 – термостатический элемент;

3 – циркуляционный насос ГВС;

4 – счетчик горячей воды;

5 – электро-контактный манометр (защита от «сухого хода»)

3. Двухступенчатая последовательная. Обязательна установка регулятора температуры.

Подключение теплообменника ГВС по двухступенчатой последовательной схеме

+ экономичная схема, т.к. используется тепло обратной воды после системы отопления в теплообменнике 1 ступени;

– почти в 2 раза дороже параллельной;

– специфика при подборе теплообменников;

Расположение патрубков на теплообменнике см. раздел Схемы сборки

1 – пластинчатый теплообменник;

2 – регулятор температуры прямого действия:

2.2 – термостатический элемент;

3 – циркуляционный насос ГВС;

4 – счетчик горячей воды;

5 – электро-контактный манометр (защита от «сухого хода»)

С целью удешевления этой схемы также возможно применение теплообменника – моноблока:

Подключение теплообменника ГВС по двухступенчатой последовательной схеме (моноблок)


+ экономичная схема, т.к. используется тепло обратной воды после системы отопления в теплообменнике 1 ступени;

+ занимает мало места;

– несколько дороже параллельной, но существенно дешевле (1ст + 2ст);

– специфика при подборе теплообменников;

Расположение патрубков на теплообменнике см. раздел Схемы сборки

1 – пластинчатый теплообменник;

2 – регулятор температуры прямого действия:

2.2 – термостатический элемент;

3 – циркуляционный насос ГВС;

4 – счетчик горячей воды;

5 – электро-контактный манометр (защита от «сухого хода»)

Теплообменники для систем отопления

Теплообменники для отопления предусмотрены для обмена теплом между двумя контурами с горячей и холодной водой. Они используются в системах отопления, где передают тепло теплоносителю благодаря более высокой температуре греющей среды.
Незаменимость таких теплообменников проявляется в частных домах, где собственное отопление. После установки этих приборов подача от отопительной системы и теплосети становятся раздельными. По разные стороны к аппарату подключаются контур внутренней системы и труба с горячим теплоносителем. Теплообменный аппарат может подключаться как напрямую, так и параллельно.

Читайте также:  Как соединить радиаторы отопления между собой

Пластинчатые теплообменники для систем отопления

Наиболее популярны в блочных ТП независимого отопления пластинчатые теплообменники. В его основе лежит комплект пластин, перфорированных штамповкой, для расширения площади теплового обмена и создания каналов, по которым происходит движение воды. Пластины собраны в пакет, на последней неподвижной плите есть патрубки входа и выхода теплоносителя греющей и нагреваемой среды, в которые и выведены каналы из пластин.

Конструкция теплообменника для отопления

Теплообменник для отопления состоит из 2-ух стальных плит с патрубками, которые объединяются с помощью направляющих и винтовых шпилек. Гофрированные пластины и уплотнители стягиваются между плитами. Чтобы регулировать количество пластин, одна из пластин сделана подвижной.
Место между прилегающими пластинами поочерёдно наполняется холодным и горячим теплоносителем, а непроницаемость системы обеспечивается уплотнителями. Малогабаритные размеры устройства гарантируют высокую эффективность, так как рельефная поверхность обеспечивает увеличение площади теплообмена.

Преимущества и недостатки

– лёгкость в установке;

– небольшие габаритные размеры;

– простота сервисного обслуживания;

– возможность изменить отапливаемую площадь;

– высокая эффективность с экономией энергии;

– продолжительный период работы;

– определённые лимиты при использовании по максимальному давлению и температуре;

– необходимость рассчитывать каждое устройство персонально под заданные характеристики;

– восприимчивость к качеству теплоносителя и присутствию примесей;

Расчет теплообменника для отопления

Каждая модель теплообменного аппарата собирается под определённые требования эксплуатации. На основе расчетов определяется материал, число пластин, технические характеристики, габариты. Расчет готовит фирма-производитель оборудования. Клиенту только нужно предоставить необходимые сведения:

– температура в контуре теплосети;

– температура внутреннего контура;

– допустимый убыток напора;

Чтобы узнать эти данные, можно сделать запрос в теплоснабжающую компанию. Тепловую мощность можно легко рассчитать, если известны другие характеристики. При подборе теплообменника следует принимать во внимание и другие характеристики, такие как вязкость и загрязнённость рабочей среды. Неверные расчеты могу основательно оказать влияние на срок службы, эффективность и цену оборудования.

– Ошибочно учтены главные параметры. Ошибки в расчете, неточности указывании характеристик в заявке – это может привести к тому, что прибор чаще загрязняется и быстрей ломается

– В весьма враждебной и загрязнённой среде материалы будут быстрее выходить из строя и засоряться, если они не подходят к теплоносителю.

– При очень невысоком значении запаса площади на загрязнение устройство станет быстро покрываться накипью, при очень высоком – станет малоэффективным

Остались вопросы?

Вы всегда можете получить консультацию по подбору теплообменника на систему ГВС у нашего инженера совершенно бесплатно.

Мы поможем определится какой именно вариант больше подходит для Вашего объекта, учитывая технические характеристики и пожелания.
Обращайтесь по номеру 8-804-333-71-04 (звонок бесплатный), или же напишите на электронную почту [email protected]
С наиболее полной информацией о теплообменном оборудовании Вы всегда можете ознакомиться на нашем сайте

Схемы подключения теплообменников (7 фото)

Подключение теплообменника может осуществляться по трем различным схемам: параллельной, двухступенчатой смешанной и последовательной. Конкретный способ подсоединения должен выбираться с учетом максимальных потоков теплоты на ГВС (Qh max) и отопление (Qo max).

На настоящий момент схема подключения теплообменника регламентируется правилами СП 41-101-95 «Проектирование тепловых пунктов»

Основные схемы подключения теплообменника:

Теперь рассмотрим все 3 способа инсталляции более детально.

Параллельное подключение с принудительной циркуляцией теплоносителя .

В данном случае необходима установка температурного регулятора, а условные обозначения расшифровываются следующим образом:

1 – пластинчатый теплообменник;
2 – температурный регулятор, в котором 2.1 – это клапан, а 2.2 – термостат;
3 – насос, подающий давление на теплоноситель;
4 – счетчик подогретой воды;
5 – манометр.

Преимущества параллельного подключения теплообменника: позволяет экономить полезное пространство помещения и очень проста в исполнении.

Недостатки: отсутствует подогрев холодной воды.

Очень проста в реализации и относительно недорогая. Позволяет сэкономить полезное пространство посещения, но при этом невыгодна в плане расхода теплоносителя. Кроме того, при таком подсоединении трубопровод должен быть увеличенного диаметра.

Двухступенчатая смешанная схема.

Как и в случае с параллельной, требует обязательной установки температурного регулятора, и чаще всего применяется при подключении общественных зданий.

Условные обозначения на чертеже полностью совпадают с условными обозначениями на параллельной схеме.

Преимущества: тепло обратной воды расходуется на подогрев входного потока, что позволяет экономить до 40% теплоносителя.

Недостаток: дороговизна, обусловленная подключением двух теплообменников для приготовления горячей воды.

В сравнении с вышерассмотренной схемой, способствует снижению расхода теплоносителя (примерно на 20-40%), но имеет и ряд недостатков:

нуждается в профессиональном и очень точном подборе оборудования;
для реализации потребуются сразу 2 теплообменных аппарата, что увеличит бюджет;
при таком подключении ГВС и отопительная система сильно влияют друг на друга.

Двухступенчатая последовательная схема.

Ее реализация подразумевает монтаж терморегулятора, а условные обозначения идентичны вышеуказанным.

Принцип действия такой системы: разветвление входящего потока на два, один из которых проходит через регулятор расхода, а второй – через подогреватель. Затем оба потока смешиваются и поступают в отопительную систему.

Преимущество: в сравнении со смешанной схемой, такое подключение теплообменника дает возможность более эффективно расходовать теплоноситель и выровнять суточную тепловую нагрузку на сеть (идеально для установки в сетях с множественными абонентскими вводами). Экономия на теплоносителе достигает 60%, в сравнении с параллельной схемой, и 25% – со смешанной.

Недостаток: нельзя полностью автоматизировать тепловой пункт.

Позволяет снизить расход теплоносителя на 60% в сравнении с параллельным подсоединением и на 25% – со смешанным. Несмотря на это, ее применяют крайне редко. А причина этому:

  • сильное взаимное влияние ГВС и отопления;
  • возможность перегревов воды в отопительной сети, что снижает ее эксплуатационный срок службы;
  • для реализации потребуются еще более высокоточные и сложные расчеты, чем при подключении по смешанной схеме;
  • сложность, а иногда и невозможность автоматизации процессов.

Случайные материалы:

  • Основной целью устройства системы отопления в любом помещении или здании всегда является обеспечение комфортных условий для жизни, работы или производ …

“>Погодозависимая автоматика. Что это такое? (3 фото) – 31/01/2015 20:21 – Прочитано 2691 раз
Клапаны Esbe серии 3F – фланцевые смесительные ротационные клапаны Esbe (Эсбе) для систем отопления, водоснабжения, кондиционирования и вентиляции в ж …

“>Трехходовые клапаны Esbe серии 3F (5 фото) – 06/02/2015 13:13 – Прочитано 3678 раз
Тепловой пункт (ТП) — комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих прис …

“>Тепловые пункты: что это и их виды (5 фото) – 27/09/2014 14:50 – Прочитано 4674 раз
РД-2Р – Реле давления для жидких и газообразных неагрессивных сред.РДД-2Р – Реле разности давлений для жидких и газообразных неагрессивных сред. Пред …

“>Реле давления РД-2Р, РДД-2Р (5 фото) – 15/05/2015 12:54 – Прочитано 4056 раз
Тепловой пункт является промежуточным звеном между теплогенерирующим объектом (ТЭЦ, котельной) и непосредственно потребителем тепловой энергии. Рам …

Ссылка на основную публикацию