Как сделать гидравлический расчет системы отопления - RemontOtdelka23.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Как сделать гидравлический расчет системы отопления

Гидравлический расчет системы отопления

От правильного выбора всех элементов системы водяного отопления, их установки, во многом зависит эффективность её работы, сроки безаварийной и экономичной эксплуатации. Насколько экономичным и эффективным будет отопление в доме, покажут уже начальные вложения средств на этапе установки и монтажа системы. Рассмотрим подробнее как осуществляется гидравлический расчет систым отопления, с целью определения оптимальной мощности отопительной системы.

Эффективность системы отопления «на глазок»

Во многом суммы таких затрат зависят от:

  • требуемых диаметров трубопроводов
  • фитингов и соответствующих им приборов отопления
  • переходников
  • регулировочной и запорной арматуры

Желание минимизировать такие затраты не должно идти в ущерб качеству, но принцип разумной достаточности, некий оптимум, должен выдерживаться.

В большинстве современных индивидуальных отопительных комплексов применяются электронасосы для обеспечения принудительной циркуляции теплоносителя, в качестве которого часто используются незамерзающие составы антифризов. Гидравлическое сопротивление таких систем отопления для разных их типов теплоносителей будет разным.

Учитывая постоянно растущую стоимость энергоносителей (все виды топлива, электроэнергия) и расходных материалов (теплоносители, запчасти и пр.), следует с самого начала стремиться заложить в систему принцип минимизации расходов на эксплуатацию системы. Опять же, исходя из их оптимального соотношения для решения задачи создания комфортного температурного режима в отапливаемых помещениях.

Разумеется, соотношение мощности всех элементов отопительной системы должны обеспечивать оптимальный режим подачи теплоносителяк приборам отопления в объёме достаточном для выполнения основной задачи всей системы — обогрева и поддержания заданного температурного режима внутри помещения, независимо от изменения наружных температур. К элементам отопительной системы относятся:

  • котел
  • насос
  • диаметр труб
  • регулировочная и запорная арматура
  • тепловые приборы

Помимо того, очень неплохо, если в проект изначально будет заложена определённая «эластичность», допускаюшая переход на иной вид теплоносителя (замена воды на антифриз). Кроме того, отопительная система, при меняющихся режимах эксплуатации никоим образом не должна вносить дискомфорт во внутренний микроклимат помещений.

Гидравлический расчёт и решаемые задачи

В процессе выполнения гидравлического расчёта отопительной системы, решается достаточно большой круг вопросов обеспечения выполнения приведенных выше и целого ряда дополнительных требований. В частности, находится диаметр труб на всех секторах по рекомендованным параметрам, включающим определение:

  • скорости движения теплоносителя;
  • оптимального теплообмена на всех участках и приборах системы, с учётом обеспечения его экономической целесообразности.

В процессе движения теплоносителя происходит неизбежное его трение о стенки трубы, возникают потери скорости, особенно заметные на участках, содержащих повороты, колена В задачи гидравлического расчёта входит определение потерь скорости движения среды, вернее, давления на отрезках системы, подобных указанным, для общего учёта и включения в проект требуемых компенсаторов. Параллельно определению потери давления, необходимо знать требуемый объём, называемый расходом, теплоносителя во всей проектируемой системе водяного отопления.

Учитывая разветвлённость современных отопительных систем и конструктивные требования реализации наиболее распространённых схем разводки, например, примерное равенство длин ветвей в коллекторной схеме, расчёт гидравлики даёт возможность учесть такие особенности. Это позволит обеспечить более качественную автобалансировку и увязку ветвей, включенных параллельно или по другой схеме. Такие возможности часто требуются в ходе эксплуатации с применением запорных и регулирующих элементов, в случае необходимости отключения или перекрытия отдельных веток и направлений, при возникновении необходимости работы системы в нестандартных режимах.

Подготовка выполнения расчёта

Проведению качественного и детального расчёта должны предшествовать ряд подготовительных мероприятий по выполнению расчётных графиков. Эту часть можно назвать сбором информации для проведения расчёта. Являясь самой сложной частью в проектировании водяной отопительной системы, расчёт гидравлики позволяет точно спроектировать всю её работу. В подготавливаемых данных обязательно должно присутствовать определение требуемого теплового баланса помещений, которые будут обогреваться проектируемой отопительной системой.

В проекте расчёт ведётся с учётом типа выбранных приборов отопления, с определёнными поверхностями теплообмена и размещения их в обогреваемых помещениях, это могут быть батареи секций радиаторов или теплообменники других типов. Точки их размещения указываются на поэтажных планах дома или квартиры.

Принимаемая схема конфигурирования системы водяного отопления должна быть оформлена графически. На этой схеме указывается место размещения генератора тепла (котёл), показываются точки крепления приборов отопления, прокладка основных подводящих и отводящих магистралей трубопроводов, прохода веток приборов отопления. На схеме подробно приводится расположение элементов регулирующей и запорной арматуры. Сюда входят все виды устанавливаемых кранов и вентилей, переходных клапанов, регуляторов, термостатов. В общем, всего, что принято называть регулирующей и запорной арматурой.

После определения на плане требуемой конфигурации системы, её необходимо вычертить в аксонометрической проекции по всем этажам. На такой схеме каждому отопительному прибору присваивается номер, указывается максимальная тепловая мощность. Важным элементом, также указываемым для теплового прибора на схеме, является расчётная длина участка трубопровода для его подключения.

Обозначения и порядок выполнения

На планах обязательно должно быть указано, определённое заранее, циркуляционное кольцо, называемое главным. Оно обязательно представляет собой замкнутый контур, включающий все отрезки трубопровода системы с наибольшим расходом теплоносителя. Для двухтрубных систем эти участки идут от котла (источника тепловой энергии) до самого удалённого теплового прибора и обратно к котлу. Для однотрубных систем берётся участок ветки — стояка и обратной части.

Единицей расчёта является отрезок трубопровода, имеющий неизменный диаметр и ток (расход) носителя тепловой энергии. Его величина определяется исходя из теплового баланса помещения. Принят определённый порядок обозначения таких отрезков, начиная от котла (источника тепла, генератора тепловой энергии), их нумеруют. Если от подающей магистрали трубопровода есть ответвления, их обозначение выполняется заглавными буквами в алфавитном порядке. Такой же буквой со штрихом обозначается сборная точка каждой ветки на обратном магистральном трубопроводе.

В обозначении начала ветки приборов отопления указывается номер этажа (горизонтальные системы) или ветки — стояка (вертикальные). Тот же номер, но со штрихом ставится в точке их подключения к обратной линии сбора потоков теплоносителя. В паре, эти обозначения составляют номер каждой ветки расчётного участка. Нумерация ведётся по часовой стрелке от левого верхнего угла плана. По плану определяется и длина каждой ветки, погрешность составляет не более 0,1 м.

На поэтажном плане отопительной системы по каждому её отрезку считается тепловая нагрузка, равная тепловому потоку, переданному теплоносителем, она принимается с округлением до 10 Вт. После определения по каждому прибору отопления в ветке, определяется суммарная нагрузка по теплу на магистральной подающей трубе. Как и выше, тут округление полученных значений ведётся до 10 Вт. После вычислений, каждый участок должен иметь двойное обозначение с указанием в числителе величины тепловой нагрузки, а в знаменателе — длины участка в метрах.

Требуемое количество (расход) теплоносителя на каждом участке легко определяется путём деления количества тепла на участке (скорректированное на коэффициент, учитывающий удельную теплоёмкость воды) на разность температур нагретого и охлаждённого теплоносителя на этом участке. Очевидно, что суммарное значение по всем рассчитанным участкам даст требуемое количество теплоносителя в целом по системе.

Не вдаваясь в детали, следует сказать, что дальнейшие расчёты позволяют определить диаметры труб каждого из участков системы отопления, потери давления на них, произвести гидравлическую увязку всех циркуляционных колец в сложных системах водяного отопления.

Последствия ошибок расчёта и способы их исправления

Очевидно, что гидравлический расчёт является достаточно сложным и ответственным этапом разработки отопления. Для облегчения подобных вычислений разработан целый математический аппарат, существуют многочисленные версии компьютерных программ, предназначенных для автоматизации процесса его выполнения.

Несмотря на это, от ошибок никто не застрахован. Среди наиболее распространённых выбор мощности тепловых приборов без проведения расчёта, указанного выше. В этом случае, помимо более высокой стоимости самих радиаторных батарей (если мощность больше требуемой), система будет затратной, расходуя повышенное количество топлива и требуя более значительных на свое содержание. Проще говоря, в комнатах будет жарко, форточки постоянно открыты и придётся дополнительно оплачивать обогрев улицы. В случае заниженной мощности попытки обогрева приведут к работе котла на повышенной мощности и также потребуют высоких финансовых затрат. Исправить такую ошибку достаточно сложно, возможно потребуется полностью переделывать всё отопление.

Если неверно проведен монтаж радиаторных батарей, эффективность работы всего отопительного комплекса также падает. К таким ошибкам относится нарушение правил установки батареи. Ошибки этой группы могу вдвое снизить теплоотдачу самых качественных тепловых приборов. Как и в первом случае, стремление повысить температуру в помещении, приведёт к дополнительным расходам энергоносителя. Чтобы исправить ошибки установки, зачастую достаточно переустановить и подключить заново радиаторные батареи.

Следующая группа ошибок относится к ошибке определения требуемой мощности источника тепла и приборов отопления. Если мощность котла заведомо выше мощности отопительных приборов, он будет работать неэффективно, потребляя большее количество топлива. Налицо двойной перерасход средств: в момент покупки такого котла и в ходе эксплуатации. Чтобы исправить положение, такой котёл, радиаторы или насос, а то и все трубы системы, придётся менять.

При расчёте требуемой мощности котла, может быть допущена ошибка в определении потерь тепла зданием. В результате мощность генератора тепловой энергии будет завышена. Результатом будет перерасход топлива. Чтобы исправить ошибку, придётся заменить котёл.

Ошибочный расчёт балансировки системы, нарушение требований примерного равенства веток может привести к необходимости установки более мощного насоса, позволяющего доставить носитель к дальним приборам отопления в нагретом состоянии. Однако в этом случае возможно появление «звукового сопровождения» в виде гула, свиста Если подобные ошибки допущены в системе тёплого водяного пола, то результатом установки мощного насоса может стать «поющий пол».

При ошибках определения требуемого количества теплоносителя или переводе гравитационной системы на принудительную циркуляцию, объём его может оказаться слишком велик, и дальние приборы отопления не будут работать. Как и ранее, попытки решения проблемы увеличением интенсивности прогрева, приведут к перерасходу газа, износу котла. Решить вопрос можно применением нового насоса и гидрострелки, тепловой пункт придётся всё равно переделывать.

После всего можно однозначно сказать, что проведение гидравлического расчёта системы отопления позволит гарантированно минимизировать расходы на всех этапах проектирования, устройства, монтажа и долговременной эксплуатации высокоэффективной системы водяного отопления.

Пример гидравлического расчета (видео)

Как сделать гидравлический расчет системы отопления

Нужно отметить, что инженерные расчеты систем водоснабжения и отопления никак нельзя назвать простыми, но без них обойтись невозможно, только очень опытный специалист-практик может нарисовать систему отопления «на глазок» и безошибочно подобрать диаметры труб. Это если схема достаточно проста и предназначена для обогрева небольшого дома высотой 1 или 2 этажа. А когда речь идет о сложных двухтрубных системах, то рассчитывать их все равно придется. Эта статья для тех, кто решился самостоятельно выполнить расчет системы отопления частного дома. Мы изложим методику несколько упрощенно, но так, чтобы получить максимально точные результаты.

Цель и ход выполнения расчета

Конечно, за результатами можно обратиться к специалистам либо воспользоваться онлайн-калькулятором, коих хватает на всяких интернет-ресурсах. Но первое стоит денег, а второе может дать некорректный результат и его все равно надо проверять.

Так что лучше набраться терпения и взяться за дело самому. Надо понимать, что практическая цель гидравлического расчета – это подбор проходных сечений труб и определение перепада давления во всей системе, чтобы верно выбрать циркуляционный насос.

Примечание. Давая рекомендации по выполнению вычислений подразумевается, что теплотехнические расчеты уже сделаны, и радиаторы подобраны по мощности. Если же нет, то придется идти старым путем: принимать тепловую мощность каждого радиатора по квадратуре помещения, но тогда точность расчета снизится.

Общая схема расчета выглядит таким образом:

  • подготовка аксонометрической схемы: когда уже выполнен расчет отопительных приборов, то известна их мощность, ее надо нанести на чертеж возле каждого радиатора;
  • определение расхода теплоносителя и диаметров трубопроводов;
  • расчет сопротивления системы и подбор циркуляционного насоса;
  • расчет объема воды в системе и вместительности расширительного бака.
Читайте также:  Как подключить теплые полы к системе отопления

Любой гидравлический расчет системы отопления начинается со схемы, нарисованной в 3 измерениях для наглядности (аксонометрия). На нее наносятся все известные данные, в качестве примера возьмем участок системы, изображенный на чертеже:

Определение расхода теплоносителя и диаметров труб

Вначале каждую отопительную ветвь надо разбить на участки, начиная с самого конца. Разбивка делается по расходу воды, а он изменяется от радиатора к радиатору. Значит, после каждой батареи начинается новый участок, это показано на примере, что представлен выше. Начинаем с 1-го участка и находим в нем массовый расход теплоносителя, ориентируясь на мощность последнего отопительного прибора:

G = 860q/ ∆t, где:

  • G – расход теплоносителя, кг/ч;
  • q – тепловая мощность радиатора на участке, кВт;
  • Δt– разница температур в подающем и обратном трубопроводе, обычно берут 20 ºС.

Для первого участка расчет теплоносителя выглядит так:

860 х 2 / 20 = 86 кг/ч.

Полученный результат надо сразу нанести на схему, но для дальнейших расчетов он нам понадобится в других единицах – литрах в секунду. Чтобы сделать перевод, надо воспользоваться формулой:

GV = G /3600ρ, где:

  • GV – объемный расход воды, л/сек;
  • ρ– плотность воды, при температуре 60 ºС равна 0.983 кг / литр.

Имеем: 86 / 3600 х 0,983 = 0.024 л/сек. Потребность в переводе единиц объясняется необходимостью использования специальных готовых таблиц для определения диаметра трубы в частном доме. Они есть в свободном доступе и называются «Таблицы Шевелева для гидравлических расчетов». Скачать их можно, перейдя по ссылке: http://dwg.ru/dnl/11875

В данных таблицах опубликованы значения диаметров стальных и пластмассовых труб в зависимости от расхода и скорости движения теплоносителя. Если открыть страницу 31, то в таблице 1 для стальных труб в первом столбце указаны расходы в л/сек. Чтобы не производить полный расчет труб для системы отопления частого дома, надо просто подобрать диаметр по расходу, как показано ниже на рисунке:

Примечание. В левом столбце под диаметром сразу же указывается скорость движения воды. Для систем отопления ее значение должно лежать в пределах 0.2—0.5 м/сек.

Итак, для нашего примера внутренний размер прохода должен составлять 10 мм. Но поскольку такие трубы не используются в отоплении, то смело принимаем трубопровод DN15 (15 мм). Проставляем его на схеме и переходим ко второму участку. Так как следующий радиатор имеет такую же мощность, то применять формулы не нужно, берем предыдущий расход воды и умножаем его на 2 и получаем 0.048 л/сек. Снова обращаемся к таблице и находим в ней ближайшее подходящее значение. При этом не забываем следить за скоростью течения воды v (м/сек), чтобы она не превышала указанные пределы (на рисунках отмечена в левом столбце красным кружочком):

Важно. Для систем отопления с естественной циркуляцией скорость движения теплоносителя должна составлять 0.1—0.2 м/сек.

Как видно на рисунке, участок №2 тоже прокладывается трубой DN15. Далее, по первой формуле находим расход на участке №3:

860 х 1,5 / 20 = 65 кг/ч и переводим его в другие единицы:

65 / 3600 х 0,983 = 0.018 л/сек.

Прибавив его к сумме расходов двух предыдущих участков, получаем: 0.048 + 0.018 = 0.066 л/сек и вновь обращаемся к таблице. Поскольку у нас в примере делается не расчет гравитационной системы, а напорной, то по скорости теплоносителя труба DN15 подойдет и на этот раз:

Идя таким путем, просчитываем все участки и наносим все данные на нашу аксонометрическую схему:

Расчет циркуляционного насоса

Подбор и расчет насоса заключается в том, чтобы выяснить потери давления теплоносителя, протекающего по всей сети трубопроводов. Результатом станет цифра, показывающая, какое давление следует развивать циркуляционному насосу, чтобы «продавить» воду по системе. Это давление вычисляют по формуле:

P = Rl + Z, где:

  • Р – потери давления в сети трубопроводов, Па;
  • R – удельное сопротивление трению, Па/м;
  • l – длина трубы на одном участке, м;
  • Z – потеря давления в местных сопротивлениях, Па.

Примечание. Двух – и однотрубная система отопления рассчитываются одинаково, по длине трубы во всех ветвях, а в первом случае — прямой и обратной магистрали.

Данный расчет достаточно громоздкий и сложный, в то время как значение Rl для каждого участка можно легко найти по тем же таблицам Шевелева. В примере синим кружочком отмечены значения 1000i на каждом участке, его надо только пересчитать по длине трубы. Возьмем первый участок из примера, его протяженность 5 м. Тогда сопротивление трению будет:

Rl = 26.6 / 1000 х 5 = 0.13 Бар.

Так же производим просчет всех участков попутной системы отопления, а потом результаты суммируем. Остается узнать значение Z, перепад давления в местных сопротивлениях. Для котла и радиаторов эти цифры указаны в паспорте на изделие. На все прочие сопротивления мы советуем взять 20% от общих потерь на трение Rl и все эти показатели просуммировать. Полученное значение умножаем на коэффициент запаса 1.3, это и будет необходимый напор насоса.

Следует знать, что производительность насоса – это не емкость системы отопления, а общий расход воды по всем ветвям и стоякам. Пример его расчета представлен в предыдущем разделе, только для подбора перекачивающего агрегата нужно тоже предусмотреть запас не менее 20%.

Расчет расширительного бака

Чтобы произвести расчет расширительного бака для закрытой системы отопления, необходимо выяснить, насколько увеличивается объем жидкости при ее нагреве от комнатной температуры +20 ºС до рабочей, находящейся в пределах 50—80 ºС. Эта задача тоже не из простых, но ее можно решить другим способом.

Вполне корректным считается принимать объем бака в размере десятой части от всего количества воды в системе, включая радиаторы и водяную рубашку котла. Поэтому снова открываем паспорта оборудования и находим в них вместительность 1 секции батареи и котлового бака.

Далее, расчет объема теплоносителя в системе отопления выполняется по простой схеме: вычисляется площадь поперечного сечения трубы каждого диаметра и умножается на ее длину. Полученные значения суммируются, к ним прибавляются паспортные данные, а потом от результата берется десятая часть. То есть, если во всей системе 150 л воды, то вместительность расширительного бака должна составлять 15 л.

Заключение

Многие, прочитав данную статью, могут отказаться от намерения считать гидравлику самостоятельно ввиду явной сложности процесса. Рекомендация для них – обратиться к специалисту-практику. Те же, кто проявил желание и уже сделал расчет тепловой мощности отопления на здание, наверняка справятся и с этой задачей. Но готовую схему с результатами все равно стоит показать опытному монтажнику для проверки.

Гидравлический расчёт системы отопления

Сегодня разберём, как произвести гидравлический расчёт системы отопления. Ведь по сей день распространяется практика проектирования отопительных систем по наитию. Это в корне неверный подход: без предварительного расчёта мы задираем планку материалоёмкости, провоцируем нештатные режимы работы и лишаемся возможности добиться максимальной эффективности.

Цели и задачи гидравлического расчёта

С инженерной точки зрения жидкостная система отопления представляется достаточно сложным комплексом, включающим устройства генерации тепла, его транспортировки и выделения в обогреваемых помещениях. Идеальным режимом работы гидравлической системы отопления считается такой, при котором теплоноситель поглощает максимум тепла от источника и передаёт его комнатной атмосфере без потерь в процессе перемещения. Конечно, такая задача видится совершенно недостижимой, однако более вдумчивый подход позволяет предсказать поведение системы в различных условиях и максимально приблизиться к эталонным показателям. Это и есть главная цель проектирования систем отопления, важнейшей частью которого по праву считается гидравлический расчёт.

Практические цели гидравлического расчёта таковы:

  1. Понять, с какой скоростью и в каком объёме осуществляется перемещение теплоносителя в каждом узле системы.
  2. Определить, какое влияние оказывает изменение режима работы каждого из устройств на весь комплекс в целом.
  3. Установить, какая производительность и рабочие характеристики отдельных узлов и устройств будут достаточными для выполнения отопительной системой своих функций без значительного удорожания и обеспечения необоснованно высокого запаса надёжности.
  4. В конечном итоге — обеспечить строго дозированное распределение тепловой энергии по различным зонам отопления и гарантировать, что это распределение будет сохраняться с высоким постоянством.

Можно сказать больше: без хотя бы базовых расчётов невозможно добиться приемлемой стабильности работы и долговечного использования оборудования. Моделирование действия гидравлической системы, по сути, является базисом, на котором строится вся дальнейшая проектная разработка.

Виды систем отопления

Задачи инженерных расчётов такого рода осложняются высоким разнообразием систем отопления, как с точки зрения масштабности, так и в плане конфигурации. Различают несколько видов отопительных развязок, в каждой из которых действуют свои закономерности:

1. Двухтрубная тупиковая система — наиболее распространённый вариант устройства, неплохо подходящий для организации как центральных, так и индивидуальных контуров обогрева.

Двухтрубная тупиковая система отопления

2. Однотрубная система или «Ленинградка» считается лучшим способом устройства гражданских отопительных комплексов тепловой мощностью до 30–35 кВт.

Однотрубная система отопления с принудительной циркуляцией: 1 — котёл отопления; 2 — группа безопасности; 3 — радиаторы отопления; 4 — кран Маевского; 5 — расширительный бак; 6 — циркуляционный насос; 7 — слив

3. Двухтрубная система попутного типа — наиболее материалоёмкий вид развязки отопительных контуров, отличающийся при этом наивысшей из известных стабильностью работы и качеством распределения теплоносителя.

Двухтрубная попутная система отопления (петля Тихельмана)

4. Лучевая разводка во многом схожа с двухтрубной попуткой, но при этом все органы управления системой вынесены в одну точку — на коллекторный узел.

Лучевая схема отопления: 1 — котёл; 2 — расширительный бак; 3 — коллектор подачи; 4 — радиаторы отопления; 5 — коллектор обратки; 6 — циркуляционный насос

Прежде чем приступить к прикладной стороне расчётов, нужно сделать пару важных предупреждений. В первую очередь нужно усвоить, что ключ к качественному расчёту лежит в понимании принципов работы жидкостных систем на интуитивном уровне. Без этого рассмотрение каждой отдельно взятой развязки превращается в переплетение сложных математических выкладок. Второе — практическая невозможность изложить в рамках одного обзора больше, чем базовые понятия, за более подробными разъяснениями лучше обратиться к такой литературе по расчёту отопительных систем:

  • Пырков В. В. «Гидравлическое регулирование систем отопления и охлаждения. Теория и практика» 2-е издание, 2010 г.
  • Р. Яушовец «Гидравлика — сердце водяного отопления».
  • Пособие «Гидравлика котельных» от компании De Dietrich.
  • А. Савельев «Отопление дома. Расчёт и монтаж систем».

Определение расхода и скорости движения теплоносителя

Наиболее известная методика расчёта гидравлических систем основывается на данных теплотехнического расчёта, которым определяется норма восполнения теплопотерь в каждом помещении и, соответственно, тепловая мощность радиаторов, в них установленных. На первый взгляд всё просто: мы имеем общее значение тепловой мощности и затем дозируем поступление теплоносителя к каждому нагревательному прибору. Для большего удобства предварительно строится аксонометрический эскиз гидравлической системы, который аннотируется требуемыми показателями мощности радиаторов или петель водяного тёплого пола.

Аксонометрическая схема системы отопления

Переход от теплотехнического расчёта к гидравлическому осуществляется путём введения понятия массового потока, то есть некой массы теплоносителя, подводимого к каждому участку отопительного контура. Массовый поток есть отношение требуемой тепловой мощности к произведению удельной теплоёмкости теплоносителя на разность температур в подающем и возвратном трубопроводе. Таким образом, на эскизе отопительной системы отмечают ключевые точки, для которых указывается номинальный массовый поток. Для удобства параллельно определяется и объёмный поток с учётом плотности используемого теплоносителя.

  • G — расход теплоносителя, кг/с
  • Q — необходимая тепловая мощность, Вт
  • c — удельная теплоёмкость теплоносителя, для воды принимаемая 4200 Дж/(кг·°С)
  • ΔT = (t2 – t1) — разность температур между подачей и обраткой, °С

Логика здесь проста: чтобы доставить необходимое количество тепла к радиатору, нужно сперва определить объём или массу теплоносителя с заданной теплоёмкостью, проходящего через трубопровод за единицу времени. Для этого требуется определить скорость движения теплоносителя в контуре, которая равна отношению объёмного потока к площади сечения внутреннего прохода трубы. Если расчёт скорости ведётся относительно массового потока, в знаменатель нужно добавить значение плотности теплоносителя:

Читайте также:  Как правильно монтировать отопление в частном доме

V = G / (ρ · f)

  • V — скорость движения теплоносителя, м/с
  • G — расход теплоносителя, кг/с
  • ρ — плотность теплоносителя, для воды можно принять 1000 кг/м 3
  • f — площадь сечения трубы, находится по формуле π­·r 2 , где r — внутренний диаметр трубы, делённый на два

Данные о расходе и скорости необходимы для определения условного прохода труб развязки, а также подачи и напора циркуляционных насосов. Устройства принудительной циркуляции должны создавать избыточное давление, позволяющее преодолеть гидродинамическое сопротивление труб и запорно-регулирующей арматуры. Наибольшую сложность представляет гидравлический расчёт систем с естественной (гравитационной) циркуляцией, для которых требуемое избыточное давление рассчитывается по скорости и степени объёмного расширения нагреваемого теплоносителя.

Потери напора и давления

Расчёт параметров по описанным выше соотношениям был бы достаточен для идеальных моделей. В реальной жизни и объёмный поток, и скорость теплоносителя всегда будут отличаться от расчётных в разных точках системы. Причина тому — гидродинамическое сопротивление движению теплоносителя. Оно обусловлено рядом факторов:

  1. Силами трения теплоносителя о стенки труб.
  2. Местными сопротивлениями протоку, образуемыми фитингами, кранами, фильтрами, термостатирующими клапанами и прочей арматурой.
  3. Наличием разветвлений присоединительного и ответвительного типов.
  4. Турбулентными завихрениями на поворотах, сужениях, расширениях и т. д.

Задача нахождения падения давления и скорости на разных участках системы по праву считается наиболее сложной, она лежит в области расчётов гидродинамических сред. Так, силы трения жидкости о внутренние поверхности трубы описываются логарифмической функцией, учитывающей шероховатость материала и кинематическую вязкость. С расчётами турбулентных завихрений всё ещё сложнее: малейшее изменение профиля и формы канала делает каждую отдельно взятую ситуацию уникальной. Для облегчения расчётов вводится два опорных коэффициента:

  1. Кvs — характеризующий пропускную способность труб, радиаторов, разделителей и прочих участков, приближенных к линейным.
  2. Кмс — определяющий местные сопротивления в различной арматуре.

Эти коэффициенты указываются производителями труб, клапанов, кранов, фильтров для каждого отдельно взятого изделия. Пользоваться коэффициентами достаточно легко: для определения потери напора Кмс умножают на отношение квадрата скорости движения теплоносителя к двойному значению ускорения свободного падения:

Δhмс = Кмс (V 2 /2g) или Δpмс = Кмс (ρV 2 /2)

  • Δhмс — потери напора на местных сопротивлениях, м
  • Δpмс — потери напора на местных сопротивлениях, Па
  • Кмс — коэффициент местного сопротивления
  • g — ускорение свободного падения, 9,8 м/с 2
  • ρ — плотность теплоносителя, для воды 1000 кг/м 3

Потеря напора на линейных участках представляет собой отношение пропускной способности канала к известному коэффициенту пропускной способности, причём результат деления нужно возвести во вторую степень:

Р = (G/Kvs) 2

  • Р — потеря напора, бар
  • G — фактический расход теплоносителя, м 3 /час
  • Kvs — пропускная способность, м 3 /час

Предварительная балансировка системы

Важнейшей финальной целью гидравлического расчёта системы отопления является вычисление таких значений пропускной способности, при которых в каждую часть каждого контура отопления поступает строго дозированное количество теплоносителя с определённой температурой, чем обеспечивается нормированное выделение тепла на нагревательных приборах. Эта задача лишь на первый взгляд кажется сложной. В действительности балансировка выполняется за счёт регулировочных клапанов, ограничивающих проток. Для каждой модели клапана указывается как коэффициент Kvs для полностью открытого состояния, так и график изменения коэффициента Kv для разной степени открытия регулировочного штока. Изменяя пропускную способность клапанов, которые, как правило, устанавливаются в точках подключения нагревательных приборов, можно добиться искомого распределения теплоносителя, а значит, и количества переносимой им теплоты.

Есть, однако, небольшой нюанс: при изменении пропускной способности в одной точке системы меняется не только фактический расход на рассматриваемом участке. Из-за снижения или увеличения протока в некой степени меняется баланс во всех остальных контурах. Если взять для примера два радиатора с разной тепловой мощностью, соединённых параллельно при встречном движении теплоносителя, то при увеличении пропускной способности прибора, стоящего в цепи первым, второй получит меньше теплоносителя из-за увеличения разницы в гидродинамическом сопротивлении. Напротив, при снижении протока за счёт регулировочного клапана все остальные радиаторы, стоящие по цепочке дальше, получат больший объём теплоносителя автоматически и будут нуждаться в дополнительной калибровке. Для каждого типа разводки действуют свои принципы балансировки.

Программные комплексы для расчётов

Очевидно, что выполнение расчётов вручную оправдано только для малых систем отопления, имеющих максимум один или два контура с 4–5 радиаторами в каждом. Более сложные системы отопления тепловой мощностью свыше 30 кВт требуют комплексного подхода при расчёте гидравлики, что расширяет спектр используемых инструментов далеко за пределы карандаша и листа бумаги.

Danfoss C.O. 3.8

На сегодняшний день существует достаточно большое количество программного обеспечения, предоставляемого крупнейшими производителями отопительной техники, такими как Valtec, Danfoss или Herz. В подобных программных комплексах для расчёта поведения гидравлики используется та же методология, которая была описана в нашем обзоре. Сначала в визуальном редакторе моделируется точная копия проектируемой системы отопления, для которой указываются данные о тепловой мощности, типе теплоносителя, протяжённости и высоте перепадов трубопроводов, используемой арматуре, радиаторах и змеевиках тёплого пола. В библиотеке программы имеется широкий спектр гидротехнических устройств и арматуры, для каждого изделия производитель заблаговременно определил рабочие параметры и базовые коэффициенты. При желании можно добавить и сторонние образцы устройств, если для них известен требуемый перечень характеристик.

В финале работы программа даёт возможность определить подходящий условный проход труб, подобрать достаточную подачу и напор циркуляционных насосов. Расчёт завершается балансировкой системы, при этом в ходе симуляции работы гидравлики происходит учёт зависимостей и влияния изменения пропускной способности одного узла системы на все остальные. Практика показывает, что освоение и использование даже платных программных продуктов оказывается дешевле, чем если бы выполнение расчётов поручалось подрядным специалистам.

Способы гидравлического расчета систем отопления

Большинство современных промышленных и жилых объектов обогревается в зимнее время за счет подключения к уже подведенному к ним централизованному теплоснабжению. Но нередки случаи, когда для обогрева жилых пространств применяются независимые (автономные) источники. При их самостоятельном монтаже не обойтись без предварительного гидравлического расчета отопления, проводимого для всего комплекса в целом.

Расчёт гидравлики отопительных каналов

Гидравлический расчет системы отопления обычно сводится к подбору диаметров труб, проложенных на отдельных участках сети. При его проведении обязательно учитываются следующие факторы:

  • величина давления и его перепады в трубопроводе при заданной скорости циркуляции теплоносителя;
  • его предполагаемый расход;
  • типовые размеры используемых трубных изделий.

При расчете первого из этих параметров важно принять во внимание мощность насосного оборудования. Ее должно хватать для преодоления гидравлического сопротивления отопительных контуров. При этом решающее значение имеет суммарная длина полипропиленовых труб, с увеличением которой растет общее гидравлическое сопротивление систем в целом. По результатам проведенного расчета определяются показатели, необходимые для последующего монтажа отопительной системы и соответствующие требованиям действующих нормативов.

Расчёт параметров теплоносителя

Расчет теплоносителя сводится к определению следующих показателей:

  • скорость движения водных масс по трубопроводу с заданными параметрам;
  • их средняя температура;
  • расход носителя, связанный с требованиями к производительности отопительного оборудования.

При определении всех перечисленных параметров, касающихся непосредственно теплоносителя, обязательно учитывается гидравлическое сопротивление трубы. Принимается во внимание и наличие элементов запорной арматуры, являющихся серьезным препятствием свободному перемещению носителя. Особенно важен этот момент для систем отопления, в состав которых входят термостатические и теплообменные приборы.

Известные формулы расчета параметров теплоносителя (с учетом гидравлики) достаточно сложны и неудобны в практическом применении. В онлайн калькуляторах используется упрощенный подход, позволяющий получить результат с допустимой для этого способа погрешностью. Тем не менее перед началом монтажа важно побеспокоиться о том, чтобы приобрести насос с показателями не ниже расчетных. Лишь в этом случае появляется уверенность в том, что требования к системе по этому критерию выполнены в полной мере и что она способна обогреть помещение до комфортных температур.

Расчёт сопротивления системы и подбор циркуляционного насоса

При расчете гидравлического сопротивления системы отопления исключается вариант естественной циркуляции теплоносителя по ее контурам. Рассматривается лишь случай принудительной прогонки по тепловым контурам разветвленной сети отопительных труб. Чтобы система работала с заданной эффективностью, потребуется образец насоса, заведомо гарантирующий нужный напор. Эта величина обычно представляется как объем прокачки теплоносителя в выбранную единицу времени.

Для определения суммарной величины сопротивления, вызванного сцеплением частиц воды с внутренними поверхностями труб в магистралях, применяется следующая формула: R = 510 4 V 1.9 / d 1,32 (Па/м). Значок V в этом соотношении соответствует скорости движения потока. При проведении самостоятельных вычислений всегда предполагается, что эта формула действительна лишь для скоростей не более 1,25 метра/сек. Если пользователю известна величина текущего расхода ГСВ, допускается воспользоваться приблизительной оценкой, позволяющей определить внутреннее сечение труб из полипропилена.

По завершении основных вычислений следует обратиться к особой таблице, в которой указываются примерные сечения трубных проходов в зависимости от полученных при расчете цифр. Наиболее сложным и затратным по времени является процедура определения гидравлического сопротивления в следующих участках действующего трубопровода:

  • в зонах сопряжения его отдельных элементов;
  • в обслуживающих отопительную систему клапанах;
  • в задвижках и контрольных приборах.

После того как все искомые параметры, касающиеся рабочих характеристик теплоносителя, найдены, переходят к определению всех остальных показателей системы.

Расчёт объема воды и вместительность расширительного бака

Для расчета рабочих характеристик расширительного бачка, обязательного для любой системы отопления закрытого типа, потребуется разобраться с явлением увеличения объема жидкости в ней. Этот показатель оценивается с учетом изменения основных рабочих характеристик, включая колебания ее температуры. Она в этом случае изменяется в очень широком диапазоне – от комнатных +20 градусов и вплоть до рабочих значений в пределах 50-80 градусов.

Вычислить объем расширительного бака удастся без лишних проблем, если воспользоваться проверенной на практике приблизительной оценкой. Она основана на опыте эксплуатации оборудования, согласно которому объем расширительного бачка составляет примерно одну десятую часть от общего количества теплоносителя, циркулирующего в системе. При этом во внимание принимаются все ее элементы, включая отопительные радиаторы (батареи), а также водяную рубашку котельного агрегата. Для определения точного значения искомого показателя потребуется взять паспорт эксплуатируемого оборудования и найти в нем пункты, касающиеся емкости батарей и рабочего бака котла.

После их определения излишки теплоносителя в системе найти совсем несложно. Для этого сначала вычисляется площадь поперечного сечения полипропиленовых труб, а затем полученное значение умножается на длину трубопровода. После суммирования по всем веткам отопительной системы к ним добавляются взятые из паспорта цифры для радиаторов и котла. От итоговой суммы затем отсчитывается одна десятая часть.

Если, к примеру, полученная вместимость для бытовой системы составила около 150 литров, оценочная емкость расширительного бака будет равна примерно 15 литрам.

Определение потерь давления в трубах

Сопротивление потерь давления в контуре, по которому циркулирует теплоноситель, определяется как их суммарное значение для всех отдельных составляющих. К последним относят:

  • потери в первичном контуре, обозначаемые как ∆Plk;
  • местные издержки теплоносителя (∆Plм);
  • падение давления в особых зонах, называемых “генераторами тепла” под обозначением ∆Pтг;
  • потери внутри встроенной теплообменной системы ∆Pто.

После суммирования этих величин получается искомый показатель, характеризующий полное гидравлическое сопротивление системы ∆Pсо.

Помимо этого обобщенного метода существуют другие способы, позволяющие определить потери напора в трубах из полипропилена. Один из них основан на сравнении двух показателей, привязанных к началу и концу трубопровода. В этом случае вычислить потерю давления можно простым вычитанием начального и конечного его значений, определяемых по двум манометрам.

Еще один вариант вычисления искомого показателя основан на применении более сложной формулы, учитывающей все факторы, которые влияют на характеристики теплового потока. Приводимое ниже соотношение в первую очередь учитывает потерю напора жидкости из-за большой длины трубопровода.

  • h – потери напора жидкости, в исследуемом случае измеряемые в метрах.
  • λ – коэффициент гидравлического сопротивления (или трения), определяемый по другим расчетным методикам.
  • L – общая длина обслуживаемого трубопровода, которая измеряется в погонных метрах.
  • D –внутренний типоразмер трубы, определяющий объем потока теплоносителя.
  • V – скорость тока жидкости, измеряемая в стандартных единицах (метр за секунду).
  • Символ g – это ускорение свободного падения, равное 9,81 м/сек2.
Читайте также:  Как правильно подключить радиатор отопления в квартире

Большой интерес представляют потери, вызванные высоким коэффициентом гидравлического трения. Он зависит от шероховатости внутренних поверхностей труб. Используемые в этом случае соотношения справедливы лишь для трубных заготовок стандартной круглой формы. Окончательная формула для их нахождения выглядит так:

  • V – скорость перемещения водных масс, измеряемая в метрах/секунду.
  • D – внутренний диаметр, определяющий свободное пространство для перемещения теплоносителя.
  • Стоящий в знаменателе коэффициент указывает на кинематическую вязкость жидкости.

Последний показатель относится к постоянным величинам и находится по специальным таблицам, в больших количествах опубликованным в Интернете.

При ускорении потока теплоносителя сопротивление его движению также возрастает. Одновременно с этим увеличиваются и потери в теплосети, рост которых не пропорционален вызвавшему этот эффект импульсу (он изменяется по квадратичному закону). Отсюда следует вывод: высокая скорость потока жидкости в трубопроводе не выгодна как с технической, так и с экономической точки зрения.

Особенности гидравлического расчета системы радиаторного отопления

Комфорт в загородном доме во многом зависит от надёжной работы системы отопления. Теплоотдача при радиаторном отоплении, системе «тёплый пол» и «тёплый плинтус» обеспечивается за счёт движения по трубам теплоносителя. Поэтому правильному подбору циркуляционных насосов, запорно-регулирующей арматуры, фитингов и определению оптимального диаметра трубопроводов предшествует гидравлический расчёт системы отопления.

Данный расчёт требует профессиональных знаний, поэтому мы в данной части учебного курса «Системы отопления: выбор, монтаж», с помощью специалиста компании REHAU, расскажем:

  • О каких нюансах следует знать перед выполнением гидравлического расчёта.
  • Чем отличаются системы отопления с тупиковым и попутным движением теплоносителя.
  • В чём состоят цели гидравлического расчёта.
  • Как материал труб и способ их соединения оказывает влияние на гидравлический расчёт.
  • Каким образом специальное программное обеспечивание позволяет ускорить и упростить процесс гидравлического расчета.

Нюансы, о которых надо знать перед выполнением гидравлического расчёта

В современной системе отопления протекают сложные гидравлические процессы с динамически меняющимися характеристиками. Поэтому на гидравлический расчёт оказывает влияние множество нюансов: начиная от типа системы отопления, вида отопительных приборов и способа их присоединения, режима регулирования и заканчивая материалом комплектующих.

Важно: Трубопроводная отопительная система загородного дома — это сложная разветвлённая сеть. Гидравлический расчет определяет её правильную работу так, чтобы ко всем отопительным приборам поступало необходимое количество теплоносителя. Правильно рассчитать и спроектировать систему отопления может только квалифицированный специалист, имеющий профильное образование по данной дисциплине.

Системы радиаторной и водопроводной разводок — это разветвленные трубопроводные сети. В трубопроводах давление теряется на трение о стенки труб и на местные сопротивления в фасонных частях при разделении или слиянии потоков, на внезапные расширения или сужения «живого» сечения. Для того чтобы теплоноситель или вода поступали к отопительным приборам или точкам водоразбора в необходимом количестве, трубопроводная сеть должна быть правильно рассчитана.

Вне зависимости от того, какая система отопления смонтирована в доме, например, радиаторная разводка или тёплый пол, принцип гидравлического расчёта одинаков для всех, но каждая система требует индивидуального подхода.

Например, система отопления может быть заправлена водой, этилен- или пропиленгликолем, а это повлияет на гидравлические параметры системы.

У этиленгликоля или пропиленгликоля большая вязкость и меньшая текучесть, чем у воды, а значит, и сопротивление при движении по трубопроводу будет больше. Кроме этого, теплоёмкость этиленгликоля меньше, чем у воды, и составляет 3,45 кДж/(кг▪К), а у воды 4.19 кДж/(кг*К). В связи с этим расход, при том же перепаде температур, должен быть на 20 с лишним процентов выше.

Важно: вид теплоносителя, который будет циркулировать в системе отопления, определяется заранее. Соответственно: проектировщик при гидравлическом расчёте системы отопления должен учесть его характеристики.

Выбор одно- или двухтрубной системы отопления также влияет на методику гидравлического расчёта.

Это связано с тем, что в однотрубной системе вода последовательно проходит через все радиаторы, и расход через все приборы в расчетных условиях будет единым при различных небольших перепадах температур на каждом приборе. В двухтрубной системе вода через отдельные кольца поступает независимо в каждый радиатор. Поэтому в двухтрубной системе перепад температур на всех приборах будет одинаковым и большим, порядка 20 К, а вот расходы через каждый прибор будут существенно различаться.

При гидравлическом расчете выбирается самое нагруженное кольцо. Оно является расчётным. Все остальные кольца увязываются с ним так, чтобы потери в параллельных кольцах были одинаковыми, с соответствующими им участками главного кольца.

При выполнении гидравлического расчета обычно вводятся следующие допущения:

  1. Скорость воды в подводках не более 0,5 м/с, в магистралях в коридорах 0,6-0,8 м/с, в магистралях в подвалах 1,0-1,5 м/с.
  2. Удельные потери давления на трение в трубопроводах – не более 140 Па/м.

Системы отопления с тупиковым и попутным движением теплоносителя

Отметим, что в системах радиаторной разводки, при едином принципе гидравлического расчёта, существуют разные подходы, т.к. системы подразделяются на тупиковые и попутные.

При тупиковой схеме теплоноситель движется по трубам «подачи» и «обратки» в противоположные стороны. И, соответственно, в попутной схеме теплоноситель движется по трубам в одном направлении.

В тупиковых системах расчет ведётся через дальние — наиболее нагруженные участки. Для этого выбирается главное циркуляционное кольцо. Это самое неблагоприятное направление для воды, по которому прежде всего подбираются диаметры отопительных труб. Все остальные второстепенные кольца, которые возникают в этой системе, должны увязываться с главным. В попутной системе расчёт ведётся через средний, наиболее нагруженный, стояк.

В системах водопровода соблюдается аналогичный принцип. Система рассчитывается через самый удалённый и самый нагруженный стояк. Но есть особенность – в расчёте расходов.

Важно: если в радиаторной разводке расход зависит от количества тепла и перепадов температур, то в водопроводе расход зависит от норм водопотребления, а также от типа установленной водоразборной арматуры.

Цели гидравлического расчета

Цели гидравлического расчета заключаются в следующем:

  1. Подобрать оптимальные диаметры трубопроводов.
  2. Увязать давления в отдельных ветвях сети.
  3. Выбрать циркуляционный насос для системы отопления.

Раскроем подробнее каждый из этих пунктов.

1. Подбор диаметров трубопроводов

Чем меньше диаметр трубопровода, тем больше сопротивление оказывается потоку теплоносителя из-за трения о стенки трубопровода и местных сопротивлений на поворотах и ответвлениях. Поэтому для малых расходов, как правило, берутся малые диаметры трубопроводов, для больших расходов, соответственно, большие диаметры, за счёт чего можно ограниченно отрегулировать систему.

Если система разветвлённая – есть короткая и длинная ветка, то на длинной ветке идёт большой расход, а на короткой – меньший. В этом случае короткая ветка должна выполняться из труб меньших диаметров, а длинная ветка должна выполняться из труб большего диаметра.

И, по мере уменьшения расхода, от начала к концу ветки диаметры труб должны уменьшаться так, чтобы скорость теплоносителя была примерно одинакова.

2. Увязка давлений в отдельных ветвях сети

Увязка может производиться подбором соответствующих диаметров труб или, если возможности этого способа исчерпаны, то за счёт установки регуляторов расхода давления или регулировочных вентилей на отдельных ветвях.

Частично мы, как это описано выше, можем увязать давление с помощью подбора диаметров трубопроводов. Но не всегда это удаётся сделать. Например, если берём самый маленький диаметр трубопровода на короткой ветке, а сопротивление в нём все равно недостаточно большое, тогда весь поток воды будет идти через короткую ветку, не заходя в длинную. В этом случае требуется дополнительная регулировочная арматура.

Регулировочная арматура может быть разной.

Бюджетный вариант — ставим регулировочный вентиль — т.е. вентиль с плавной регулировкой, который имеет градацию в настройке. Каждый вентиль имеет свою характеристику. При гидравлическом расчёте проектировщик смотрит, какое давление необходимо погасить, и определяется так называемая невязка давлений между длинной и короткой ветками. Тогда по характеристике вентиля проектировщик определяет, на сколько оборотов этот вентиль, от полностью закрытого положения, надо будет открыть. Например, на 1, на 1.5 или на 2 оборота. В зависимости от степени открытия вентиля будет добавляться разное сопротивление.

Более дорогой и сложный вариант регулировочной арматуры — т.н. регуляторы давления и регуляторы расхода. Это устройства, на которых мы задаём необходимый расход или необходимый перепад давлений, т.е. падение давлений на этой ветке. В этом случае устройства сами контролируют работу системы и, если расход не соответствует требуемому уровню, то они открывают сечение, и расход увеличивается. Если расход слишком большой, то сечение перекрывается. Аналогично происходит и с давлением.

Если все потребители после ночного понижения теплоотдачи одновременно открыли утром свои отопительные приборы, то теплоноситель попытается, в первую очередь, поступать в ближние к тепловому пункту приборы, а до дальних дойдет спустя часы. Тогда сработает регулятор давления, прикрывая ближайшие ветки и, тем самым, обеспечит равномерное поступление теплоносителя во все ветки.

3. Подбор циркуляционного насоса по давлению (напору) и по расходу (подаче)

Расчетные потери давления в главном циркуляционном кольце (с небольшим запасом) определят напор для циркуляционного насоса. А расчетный расход насоса – это суммарный расход теплоносителя по всем ветвям системы. Насос подбирается по напору и по расходу.

Если в системе стоит несколько циркуляционных насосов, то в случае их последовательного монтажа у них суммируется напор, а расход будет общим. Если насосы работают параллельно, то у них суммируется расход, а напор будет одинаковым.

Важно: Определив в ходе гидравлического расчёта потери давления в системе, можно выбрать циркуляционный насос, который оптимально будет соответствовать параметрам системы, обеспечивая оптимум затрат – капитальных (стоимость насоса) и эксплуатационных (стоимость электроэнергии на циркуляцию).

Как выбор комплектующих для системы отопления влияет на гидравлический расчёт

Материал, из которого изготовлены трубы системы отопления, фитинги, а также техника их соединения, оказывает существенное влияние на гидравлический расчет.

Трубы, имеющие гладкую внутреннюю поверхность, уменьшают потери на трение при движении теплоносителя. Это даёт нам преимущества – берём трубопроводы меньшего диаметра и экономим на материале. Также уменьшаются затраты электроэнергии, необходимые для работы циркуляционного насоса. Можно взять насос меньшей мощности, т.к. за счёт меньшего сопротивления в трубопроводах требуется меньший напор.

В местах соединений «фитинг-труба», в зависимости от способа их монтажа, могут быть большие потери, или, наоборот, потери на сопротивление потоку при движении теплоносителя сведены к минимуму.

Например, если используется техника соединения методом «надвижной гильзы», т.е. развальцовывается конец трубопровода, и внутрь вставляется фитинг, то за счёт этого не происходит заужения живого сечения. Соответственно: уменьшается местное сопротивление, и уменьшаются энергетические затраты на циркуляцию воды.

Подведение итогов

Выше уже говорилось, что гидравлический расчёт системы отопления — это сложная задача, требующая профессиональных знаний. Если предстоит спроектировать сильно разветвлённую систему отопления (большой дом), то расчёт вручную отнимает много сил и времени. Для упрощения данной задачи разработаны специальные компьютерные программы.

С помощью этих программ можно сделать гидравлический расчёт, определить регулировочные характеристики запорно-регулировочной арматуры и автоматически составить заказную спецификацию. В зависимости от типа программ, расчёт осуществляется в среде AutoCAD или в собственном графическом редакторе.

Добавим, что сейчас при проектировании промышленных и гражданских объектов наметилась тенденция к использованию BIM технологий (building information modeling). В этом случае все проектировщики работают в едином информационном пространстве. Для этого создаётся «облачная» модель здания. Благодаря этому любые нестыковки выявляются ещё на стадии проектировании, и своевременно вносятся необходимые изменения в проект. Это позволяет точно спланировать все строительные работы, избежать затягивания сроков сдачи объекта и тем самым сократить смету.

Ссылка на основную публикацию