Этиленгликоль применение в отоплении - RemontOtdelka23.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Этиленгликоль применение в отоплении

Обогревать дом надо с умом: что учитывать при выборе теплоносителя для системы отопления?

Вы просматриваете раздел Теплоноситель, расположенный в большом разделе Компоненты системы.

В качестве теплоносителей для систем отопления используются замерзающие и незамерзающие жидкости.

К первому виду относится вода, а ко второму — составы на основе спиртов (антифризы), куда добавляются специальные присадки, формирующие те или иные свойства жидкости.

Требования к теплоносителю для водяного отопления

Чтобы правильно выбрать теплоноситель, стоит учитывать основные требования, которые к нему предъявляются:

Теплоноситель не должен быть токсичным, ведь время от времени в системе могут случаться протечки, и ремонт не должен быть сопряжён с опасностью для здоровья.

Не допускается также использование в качестве жидкости для отопления пожароопасных и взрывоопасных веществ.

  • Высокий показатель теплоёмкости, который обеспечивает эффективный перенос тепла от котла к радиаторам.
  • Разброс температур от отметки замерзания до точки кипения должен быть максимально большим, чтобы минимизировать вероятность аварий.
  • Жидкость не должна разъедать уплотнения или приводить к коррозии в трубах и радиаторах.
  • Когда лучше использовать воду в открытом или закрытом типе отопления

    Идеальным теплоносителем для системы отопления на дровах или угле является вода. Если используется отопительная система закрытого типа, то для неё подойдёт даже обычная водопроводная вода из крана. Она образует тончайший слой накипи на трубах, но это происходит однократно после заполнения контура теплоносителем. В закрытой системе испарения жидкости нет, и доливать её приходится крайне редко, а малое количество осадка никак не влияет на эффективность отопления.

    В системы открытого типа требуется регулярно доливать воду, а значит — количество накипи увеличивается. Чтобы предотвратить этот процесс, используют дистиллированную или очищенную воду.

    Дистиллят продаётся в магазинах, но стоит он недешево, поэтому на практике вместо него часто берут фильтрованную питьевую воду.

    Теплоёмкость воды составляет примерно 1 кал/г*°C, то есть килограмм воды, нагретый до 90 °C и остывший в радиаторе до 70 °C отдаст в помещение 20 ккал тепловой энергии. По этому показателю вода значительно превосходит все существующие теплоносители.

    У воды есть и другие преимущества:

    • безвредна для здоровья людей и животных;
    • безусловное лидерство по цене и доступности;
    • неограниченный срок эксплуатации в системе.

    У воды есть один условный недостаток: если систему отопления не запустить при наступлении морозов, вода в ней замёрзнет, что приведёт к разрушению труб и выходу котла из строя. Поэтому в тех системах, где есть вероятность простоя в зимнее время, в качестве теплоносителя используется антифриз.

    Применение антифриза

    В отличие от воды, незамерзающую жидкость не нужно сливать из отопительной системы в случае простоя в зимнее время, поскольку антифриз не теряет текучести при отрицательных температурах. Все антифризы представляют собой вещества на основе многоатомных спиртов, их свойства различаются в зависимости от химического состава. К прочим плюсам антифризов относятся следующие:

    1. Даже если температура опускается ниже рабочего уровня антифриза, последний не затвердевает и не расширяется подобно воде, благодаря чему не повреждается система отопления.
    2. В состав антифризов добавляют специальные присадки, которые уменьшают их химическую активность, подавляют пенообразование и предотвращают появление накипи внутри системы.
    3. Срок службы всех «незамерзаек» до 5 лет, далее требуется их замена.

    При всех достоинствах антифризов у них есть и недостатки:

    1. Теплоёмкость примерно на 15% ниже, чем у воды.
    2. Из-за повышенной вязкости требуется более мощный циркуляционный насос.
    3. Этилен- и пропиленгликоль разрушительно действуют на цинк, поэтому нельзя применять их в оцинкованных трубах.

    Важно! Для электродных котлов можно использовать не все марки антифриза. Перед покупкой «незамерзайки» внимательно прочитайте в инструкции к котлу, какие теплоносители с ним можно использовать, иначе прибор снимут с гарантии.

    На основе этиленгликоля

    Теплоносители на основе этиленгликоля стоят недорого, но обладают огромным недостатком — высокой токсичностью. Отравление может наступить не только при попадании внутрь организма, но и при вдыхании паров вещества или при его контакте с кожей.

    Фото 1. Теплоноситель на основе этиленгликоля Аргус-Галан, 20 кг, производитель – «Галан», Россия.

    Эта жидкость характеризуется повышенной текучестью, поэтому при малейшем нарушении герметичности она способна вытечь наружу, что представляет опасность для людей и животных. Поэтому антифризы данного типа используются для обогрева нежилых помещений, а для частных домов рекомендуются другие теплоносители.

    Важно! Категорически запрещено заливать «незамерзайки» на основе этиленгликоля в открытые системы отопления, где токсичное вещество будет испаряться из расширительного бака.

    Не используются такие жидкости и в двухконтурных системах, где есть вероятность их попадания в ёмкости для горячей воды.

    Антифриз для системы отопления загородного дома

    В этой статье разберем виды антифризов, их отличия. Расскажу, какой антифриз выбрать для отопления, сравним антифризы с водой. Объясню, почему нельзя применять глицерин и тосол в качестве теплоносителя. В заключении – почему антифриз бесполезен в системе отопления загородного дома для постоянного проживания.

    Содержание

    1. Принцип работы антифризов

    Вода при 0°С резко и скачкообразно превращается в лёд, при этом расширяясь на 11%. Трубы не выдерживают такой нагрузки. Систему отопления приходится демонтировать, включая котел и все радиаторы. Вода – хороший растворитель, поэтому даже незначительное количество антифриза сильно смещает точку кристаллизации воды, и скачкообразнозного превращения в лед не происходит.

    Вода с добавкой антифриза при отрицательных температурах медленно густеет, а расширение жидкости происходит незначительно, поэтому система отопления остается целой и невредимой.

    Например, кристаллизация воды с 30% незамерзающей жидкости (пропиленгликоль) идет так медленно, что нет необходимости разбавлять теплоноситель до -30°С, достаточно добавить антифриз до расчетной температуры -12-15°С.
    С падением температуры ниже расчетной такая смесь будет медленно, но верно застывать, и только при -30°С может замерзнуть полностью.

    2. Какая разница между зеленым и красным антифризом?

    В качестве теплоносителя чистый 100% антифриз не используется — всегда в разбавленном состоянии: от 20 до 35% антифриза и 80-65% воды соответственно. В отоплении применяется только 2 вида антифризов на базе двухатомных спиртов: этиленгликоль и пропиленгликоль. Производители выпускают как концентрированный состав, так и уже разбавленный для заливки в систему отопления. Этиленгликоль — концентрированный раствор красного цвета, а этиленгликоль — раствор зеленого цвета. Их отличия я опишу ниже.

    3. Этиленгликоль в системе отопления

    Раствор малинового цвета. Токсичное вещество, используемое в автоиндустрии, производства машинных масел, пластика и целлофана. Имеет крайне низкую температуру застывания -70°С.
    Используется преимущественно в системах отопления и антиобледенения промышленных объектов, футбольных полей. Не рекомендуется использовать этиленгликоль в системах отопления загородных из-за его токсичности.

    4. Пропиленгликоль в системе отопления

    Раствор зеленого цвета, пищевая добавка E1520, используется в косметической промышленности. Температура застывания -50°С. В 3 раза более вязкое и в 2 раза более дорогое вещество, чем этиленгликоль.
    Применяется в зданиях, где есть риск разморозки системы, но требуется соблюдение экологических характеристик. Мы используем пропиленгликоль в рекуператорах системы вентиляции ресторанов. нашей стране пропиленгликоль для системы отопления производится из импортного сырья, поэтому значительно дороже этиленгликоля.

    5. Какой теплоноситель выбрать для отопления?

    Для системы отопления отличия этиленгликоля и пропиленгликоля незначительны, но разная температура замерзания (-70 и -50°С) сказывается на процентном соотношении вещества. Для обеспечения одной и той же температуры кристаллизации (-25°С) требуется практически в 2 раза меньше этиленгликоля, чем пропиленгликоля, но зависимость не линейна.

    Например, когда концентрация этиленгликоля в воде становится больше 50% – его характеристики начинают снижаться. Связано это с неэффективной работой антикоррозионных присадок, которые плохо вступают в контакт с водой.

    6. Какой антифриз лучше для отопления дома

    Главный критерий выбора антифриза – безопасность!

    Пропиленгликоль применяется в пищевой промышленности. Вещество не токсичное. Используется в качестве антифриза в системах отопления коттеджей, загородных домов и помещений с постоянным пребыванием людей.

    Если в здании не требуется обеспечение экологической безопасности, например, cклады, гаражи и производственные цеха, можно смело применять этиленгиликоль. Во всех остальных случаях – пропиленгликоль.

    7. Глицерин в системе отопления

    Много получал вопросов про «глицерин». Теплоноситель на основе глицерина в системе отопления недопустим даже в разбавленном состоянии.

    Во-первых, чудовищная кинематическая вязкость при отрицательных температурах (при 0°С –9000 м 2 /с x 10 6 — глицерин, 67 м 2 /с x 10 6 – этиленгликоль) – а значит и чудовищные потери давления. Сложно будет протолкнуть по трубам теплоноситель на основе глицерина.

    Во-вторых, налипание органических частиц глицерина на поверхность теплообменника котла, его перегрев и полный выход из стоя. Разбавление глицерина спиртами приводит только к образованию взрывоопасных соединений.

    Любые другие незамерзающие жидкости, например, тосол в системе отопления, недопустимы, т.к. не содержат необходимого количества антикоррозионных присадок. Стоимость антифриза для отопления определяется качеством этих самых присадок, благодаря которым одни антифризы служат 5 лет, а другие 10. С годами антифриз в системе отопления окисляется с образованием уксусной кислоты, что приводит к разрушению латунных соединений на радиаторах, поэтому важно вовремя менять теплоноситель.

    Читайте также:  Как убрать пасту от ручки с обоев

    8. Отопление антифризом или водой

    После прочтения этого раздела Вы скорее всего откажетесь от антифриза в системе отопления. Главный плюс антифриза – сохранность системы при отрицательных температурах, полностью перечеркивается его минусами.

    • Низкая теплоемкость антифриза.
      Увеличение размероврадиаторов на 20-23%
      Теплоемкость антифриза существенно ниже, чем теплоемкость воды. Разбавляя воду 35% антифризом, мы теряем примерно 200 Вт с 1 кВт тепловой энергии. Это значит, что на 20% требуется увеличить размеры труб, радиаторов и котла. В пересчете на загородный дом 300 м 2 мы теряем примерно 60 тысяч рублей на увеличении размеров системы. Для системы теплых полов антифриз вообще не применим, опять же из-за низкой теплоемкости.

      Срок службы антифризов от 5 до 10 лет
      С годами антифриз окисляется и благополучно разрушают латунные соединения. Через 5 – 10 лет этиленгликоль и пропиленгликоль нужно сливать, утилизировать и менять на новый. Вам придется не только купить новый антифриз, но и заплатить за утилизацию старого. К сожалению, в нашей стране нет службы утилизации этиленгликоля в малых объемах, поэтому поиск, кому сдать эту химию будет затруднителен. Не буду рассматривать идею слить антифриз соседу на участок.

      Использование секционных радиаторов в системах с антифризом недопустимо
      Резиновые межсекционные прокладки быстро окисляются, и радиаторы дают течь. Применяем только стальные панельные. Недопустимо использование и оцинкованных труб. Антифриз благополучно вымывает цинк, и труба остается голая.

      Почему антифриз бесполезен для загородного дома?
      Антифриз успешно справится с задачей — система отопление не замерзнет зимой в Ваше отсутствие, но что делать с системой водоснабжения? Трубы водоснабжения при отрицательной температуре замерзнут быстрее и с худшими последствиями, т.к. прокладываются не только в полу, но и в стенах. Вам придется снимать плитку, бить стяжку и менять трубы в санузлах, душевых, кухне, заменить всю обвязку котельной по водоснабжению. Закачать в систему водоснабжения антифриз конечно же не получится, как и проложить все трубы с греющих кабелем.

      Вывод: Антифризы подходят либо для отопления маленьких дачных домиков для временного проживания, либо больших складов, цехов и предприятий. В системе отопления полноценного загородного дома антифризы бесполезны.

      Антифриз для системы отопления загородного дома нужен, если:
      не планируете проживать в доме зимой;
      в доме 1-2 санузла с тройниковой системой водоснабжения (без коллектора), которую можно слить перед наступлением холодов.
      в доме нет водяных теплых полов. Если они водяные — тогда смысла делать антифриз в отоплении нет.

      Полноценный загородный дом оставлять зимой без дежурного отопления нельзя. Зимой необходимо поддерживать постоянное дежурное отопление +10-12°С.
      Отопление полноценного загородного дома для постоянного проживания антифризом такой же проигрышный вариант, как и отопление дома теплым полом, который применим только в южных областях нашей страны.

      Управлять котлом можно удаленно через телефон или планшет по Интернет-соединению или GPS. Можно задавать температуру воздуха к конкретной дате и времени приезда, а котел будет точно сигнализировать о возможных ошибках в работе. Для поддержания системы отопления в случае аварии основного котла часто устанавливают резервный электрический, который также включается автоматически. Вы можете заказать проект такой котельной и системы отопления у нас на странице Услуг.

      Так Ваши инженерные системы будут по-настоящему защищены без антифриза.

      Если Вам понравилась моя статья и Вы ищете надежных специалистов по проектированию – звоните и пишите мне на почту.

      Применение антифризов в системах отопления, вентиляции, кондиционирования воздуха

      О. М. Гольтяев, канд. физ.– мат. наук, зам. генерального директора ОАО «ТЕХНОФОРМ», gol@cstream.ru

      В статье рассматриваются проблемы, которые возникают при использовании антифриза в качестве теплоносителя в автономных системах отопления и в качестве хладоносителя в системах вентиляции и кондиционирования воздуха.

      Суровость российских зим диктует необходимость использовать в автономных системах отопления и в системах кондиционирования воздуха незамерзающие теплоносители – антифризы. Применение антифриза может привести к существенному снижению энергетических затрат и принести заметную экономическую выгоду при эксплуатации инженерного оборудования зданий. Так, системы охлаждения воздуха можно отключать в зимнее время без необходимости слива теплоносителя из вторичного контура чиллера. В загородных домах антифризы дают возможность применять прерывистый режим отопления и производить обогрев помещений только на время их использования.

      Разновидности антифризов

      Из существующих в природе жидкостей наилучшими физическими свойствами с точки зрения теплопередачи обладает, безусловно, вода. У нее наиболее высокая теплоемкость и теплопроводность, а также относительно низкая вязкость. Однако высокая температура кристаллизации 0 °C и уникальное свойство расширяться при замерзании делают воду непригодной для холодильных установок и систем, имеющих риск замерзания в зимних условиях. В связи с этим во многих случаях приходится использовать незамерзающие (низкозамерзающие) теплоносители – антифризы, которые могут функционировать при отрицательных рабочих температурах, а также практически не расширяются при замерзании.

      Антифризами, которые принято использовать в качестве теплоносителей и хладоносителей, являются водные растворы этиленгликоля, пропиленгликоля, других гликолей, а также растворы некоторых неорганических и органических солей. По существу теплоносители и хладоносители выполняют одинаковую функцию, так как переносят тепло от «нагревателя» к «холодильнику», и их терминологическое различие носит условный характер. В дальнейшем будем использовать лишь один термин – теплоноситель.

      Области применения низкозамерзающих теплоносителей различны и многообразны: системы отопления; системы кондиционирования воздуха, чиллеры; вторичные контуры холодильных установок, охлаждение ледовых полей; солнечные батареи; тепловые насосы; системы рекуперации тепла; охлаждение двигателей внутреннего сгорания; подогрев нефти и газа и многое другое.

      В современной инженерной практике различные виды теплоносителей применяются в зависимости от назначения и диапазона рабочих температур, при которых они используются. Главное различие теплоносителей заключается в их основе (гликоле или соли), которая понижает температуру замерзания и определяет вязкость.

      Солевые растворы применяются во вторичных контурах холодильных установок при отрицательных рабочих температурах, преимущественно при температурах ниже –20 °C. Это обусловлено их относительно малой вязкостью по сравнению с аналогичными теплоносителями на основе гликолей (рис. 1). Главным недостатком таких антифризов является высокая коррозионная активность, которая, однако, в значительной мере снижается при низких температурах.

      Зависимость вязкости от температуры для различных типов теплоносителей. Концентрация всех низкозамерзающих теплоносителей соответствует одинаковой температуре замерзания –40 °C. Данные компании Arteco [1]

      Растворы этиленгликоля и пропиленгликоля применяют при рабочих температурах от –20 °C до +130 °C. Хотя такие теплоносители при определенных концентрациях могут оставаться в жидкой фазе вплоть до температур порядка –70 °C, их применение в этой низкотемпературной области становится невозможным из-за непомерно высокой вязкости. По своим физическим характеристикам, таким как температура замерзания, теплоемкость, теплопроводность, вязкость, объемное расширение, теплоносители на основе этиленгликоля и пропиленгликоля достаточно близки [1]. При этом этиленгликоль во многих случаях оказывается предпочтительнее пропиленгликоля как с технической, так и с финансовой точки зрения. Объемы производства этиленгликоля в мире на порядок больше, чем пропиленгликоля, соответственно, его цена вдвое ниже. Однако у пропиленгликоля имеется одно неоспоримое преимущество – низкая токсичность. Поэтому его применяют на объектах, требующих повышенного уровня безопасности, например на пищевых производствах.

      При высоких рабочих температурах, вплоть до +180 °C, применяются растворы триэтиленгликоля [3], благодаря его относительно высокой термостабильности. Такие продукты не являются предметом массового производства, их выпускают под заказ и они являются, образно говоря, экзотикой в ряду теплоносителей.

      Поскольку формат данной статьи не позволяет осуществить полный обзор всех перечисленных выше теплоносителей, ограничим свое рассмотрение лишь теплоносителями на основе этиленгликоля в применении к системам отопления, вентиляции, кондиционирования. Именно этиленгликолевые теплоносители получили на сегодняшний день наиболее широкое распространение в инженерных системах зданий и сооружений.

      Зависимость температуры кристаллизации от концентрации этиленгликоля (антифриз Glythermin NF) в водном растворе. Данные компании BASF [3]

      Антифриз предназначен исключительно для технического использования, поэтому нельзя допускать его попадания в пищевые продукты и в питьевую воду во избежание отравления. Опасной для жизни человека дозой при попадании в желудок считается 100 мл этиленгликоля. При случайном попадании антифриза на руки или на одежду он легко смывается водой, не оставляя раздражения или ожогов. Срок биологического разложения этиленгликоля в почве составляет порядка 1 мес. [1]. Этиленгликоль, растворенный в воде в концентрациях менее 1 г/л, не причиняет вреда рыбам и водным живым организмам [3].

      Следует отметить, что антифриз имеет меньший, чем у воды, коэффициент поверхностного натяжения, поэтому легче проникает в мелкие поры, трещины. Кроме того, набухание резины в антифризе меньше, чем в воде. Поэтому в системах, длительное время работавших на воде, замена воды на антифриз может привести к появлению протечек, связанных с тем, что резиновые прокладки принимают первоначальный объем. Рекомендуется первые дни после заливки антифриза следить за состоянием соединительных узлов системы и при необходимости подтягивать их или менять уплотнения. Лучшей защитой от протечек являются хорошие прокладки и качественная сборка системы.

      В системах отопления нельзя использовать элементы, содержащие цинк, в частности, оцинкованные изнутри трубы. При температурах, превышающих +70 °C, цинковое покрытие будет отслаиваться и оседать на нагревательных элементах котла, а антикоррозионные свойства теплоносителя значительно ослабятся.

      Срок службы антифриза зависит от режима его эксплуатации. Не рекомендуется доводить теплоноситель до состояния кипения (температура кипения при атмосферном давлении составляет +106…+116 °C в зависимости от степени разбавления водой). При локальном перегреве теплоносителя до температур, превышающих +170 °C, будет происходить термическое разложение этиленгликоля, образование нагара на нагревательных элементах, выделение газообразных продуктов разложения и разрушение антикоррозионных присадок. Поэтому в нагревательных котлах должна быть обеспечена надлежащая циркуляция теплоносителя, и нагревательные элементы в процессе работы должны быть полностью погружены в теплоноситель, чтобы не допускать их перегрева и «пригорания» антифриза. По существу, в теплообменных системах следует проводить предварительные тепловые расчеты на предмет установления возможности для данного теплоносителя обеспечивать необходимые тепловые потоки. При этом можно использовать табличные данные для параметров, входящих в уравнения подобия, таких как число Прандтля, число Рейнольдса [3, 4].

      Еще одним важным аспектом применения антифризов является герметичность теплообменной системы. Известно, что этиленгликоль окисляется при контакте с атмосферным воздухом и процесс окисления ускоряется при повышении температуры – примерно вдвое на каждые 10 °C. Продукты окисления этиленгликоля – гликолаты – разрушают антикоррозионные присадки и приводят к усилению коррозии (рис. 3). Поэтому необходимо по возможности исключить контакт теплоносителя с воздухом, в частности, применять герметичные расширительные емкости.

      Температура замерзания антифриза

      В практике применения антифризов часто возникает вопрос о выборе температуры замерзания теплоносителя, который сводится к выбору концентрации антифриза в растворе (рис. 4). Повышенная концентрация, кроме удорожания, создает повышенную вязкость теплоносителя и снижает эффективность теплопередачи. Кроме того, не всякий насос способен перекачивать жидкость с вязкостью, в 2–3 раза превышающей вязкость воды. Выбор оптимальной концентрации теплоносителя важен как с технической, так и с финансовой точки зрения. Часто также возникает вопрос, что будет с теплообменной системой, если теплоноситель в ней замерзнет в результате штатной или нештатной ситуации.

      В отличие от воды, водно-этиленгликолевый раствор и, соответственно, теплоноситель замерзает в несколько этапов. Вода замерзает «мгновенно» (разумеется, не по времени, а по температуре), то есть при 0 °C это еще жидкость, а при –1 °C – уже лед. Теплоноситель замерзает постепенно: в процессе охлаждения при некоторой отрицательной температуре в жидкости начинают образовываться кристаллы. Затем, при дальнейшем охлаждении жидкости, кристаллов в ней становится все больше и больше (это состояние называется «шуга», по-английски slush ice – что-то наподобие манной каши), и наконец, при некоторой более низкой конечной температуре эта шуга затвердевает.

      Начальная температура образования кристаллов называется «температурой кристаллизации», по-английски freezing point (измеряется по ASTM D 1177). Конечная температура перехода из жидкого в твердое состояние называется «температурой потери текучести» или «температурой застывания», по-английски setting point (по DIN 51583) или pour point (по ASTM D 97).

      Для антифризов с температурой кристаллизации –30 °C, которыми мы обычно пользуемся, разница между freezing point и setting point составляет около 8 °C. То есть антифриз, который начинает кристаллизоваться при –30 °C, затвердеет лишь при –38 °C (см. рис. 4). В промежутке между –30 и –38 °C он будет находиться в состоянии «манной каши» – более или менее густой.

      В России при описании и тестировании антифризов обычно пользуются терминами «температура начала кристаллизации» (по ГОСТ 28084–89) или «температура кристаллизации» (по ГОСТ 18995.5, совпадает с ASTM D 1177). В Европе, однако, чаще используют понятие «температура защиты от замерзания», по-английски frost protection. Она определяется как среднее арифметическое между «температурой кристаллизации» и «температурой застывания». На наш взгляд, именно frost protection наиболее адекватно характеризует температуру замерзания антифриза, т.к. это середина фазового перехода из жидкости в твердое тело.

      Здесь необходимо отметить еще один принципиальный момент. В отличие от воды, которая при замерзании расширяется в объеме на 9% и рвет трубы, антифриз при замерзании не размораживает теплообменную систему. Водно-этиленгликолевый раствор при переходе из жидкости в твердую фазу расширяется весьма незначительно. Как видно из графика на рис. 5, теплоноситель (HTF) с концентрацией этиленгликоля 40% при замерзании (температура замерзания около –30 °C) расширяется в объеме лишь на 1,5%. Соответственно, его линейное расширение составит всего 0,5%, а это безопасно практически для любых конструкционных материалов.

      Изменение объема антифриза при замерзании. Данные компании DOW Chemical [2]

      Таким образом, при сильных холодах не следует опасаться серьезных последствий (трещин или протечек) от антифриза, замерзшего в системе. Антифриз превратится в застывшую «манную кашу», а при ослаблении холодов снова станет жидким.

      Производители антифризов

      Мировыми лидерами в разработке и производстве теплоносителей на сегодняшний день являются компании DOW Chemical (США) [2], Arteco (Бельгия) [1], BASF (Германия) [3], Clariant (Швейцария) [4]. Эти компании разработали лучшие современные пакеты присадок и производят на их основе теплоносители под брендами Dowtherm, Ucartherm (DOW); Zitrec (Arteco); Glythermin (BASF); Antifrogen (Clariant). Наиболее продвинутыми в этой области являются так называемые карбоксилатные технологии [5], обладающие высокотемпературной стабильностью и максимальной долговечностью.

      В России, к сожалению, отсутствуют собственные разработки пакетов присадок, отвечающие мировому уровню. По-видимому, это связано с отсутствием адекватной научной базы, специалистов и вообще социального заказа на такие разработки. Отечественные теплоносители, которые присутствуют на российском рынке, являются, по сути, морально устаревшим тосолом или его модификациями. Как правило, такие продукты изготавливаются по так называемой традиционной технологии [5], соответствующей ГОСТ 28084–89 для автомобильных охлаждающих жидкостей, производившихся в СССР.

      Некоторые российские предприятия кооперируются с ведущими зарубежными компаниями и производят продукцию, разработанную этими компаниями и широко применяемую в мире. При этом используются российские базовые сырьевые компоненты и производственные мощности, а из-за рубежа поступают пакеты присадок и технология производства.

      В заключение следует сказать, что применение антифризов в системах отопления, вентиляции, кондиционирования имеет широкие перспективы, и российский рынок низкозамерзающих теплоносителей постоянно расширяется и совершенствуется.

      Автор готов ответить на вопросы читателей, связанные с тематикой настоящей статьи.

      Поговорим о строительстве

      Применение этиленгликоля в системах отопления

      Данная статья будет посвящена такому теплоносителю как «этиленгликоль», мы поговорим о его свойствах, преимуществах применения. Расскажем, каким образом работает энергоэффективная система отопления на основе этиленгликоля.

      Первое, что нужно отметить, что применение этиленгликоля в качестве теплоносителя для систем отопления – достаточно новая технология. Так, в Томской области в 2011 – 2012гг. такое энергоэффективное решение было использовано при строительстве одного из детских садов.

      Итак, что же такое «этиленгликоль». Этиленгликоль – это вязкая, бесцветная жидкость, не имеющая запаха. Химическая формула этиленгликоля: C2H4(OH)2. Это токсичное соединение, и, казалось бы, как его можно применять в системе отопления? Но при условиях точного соблюдения технологии и применения только в закрытых системах отопления этиленгликоль становится малоопасным.

      Самым важным свойством, которое и обусловило применение этиленгликоля в качестве антифриза, состоит в том, что этиленгликоль сильно уменьшает температуру замерзания воды. Поэтому водные растворы этиленгликоля обладают хорошими теплофизическими свойствами.

      Зависимость температуры замерзания теплоносителей от концентрации в них этиленгликоля

      tзамерзания °С-40-30-20-10-5
      Cодержание, %53463624141

      Теперь перейдем к самой технологии применения этиленгликоля в качестве теплоносителя для энергосистемы, которая была использована для детского учреждения в Томской области.

      В основу данного проекта заложено применение так называемых геотермальных тепловых насосов. Принцип прост: ниже глубины промерзания температура грунта превосходит значение «абсолютного нуля», таким образом, накопленное тепло (геотермальную энергию) из земли грех не позаимствовать. Из физики известно, что энергия не передается от холодного тела (в данном случае от грунта) к горячему. По этой причине система геотермального отопления выполнена из трех контуров, в которых циркулируют жидкости с различными физическими свойствами. Во внешнем отопительном контуре, проходящем на глубине два с половиной метра, циркулирует антифриз — (этиленгликоль). Во внутреннем отопительном контуре через систему труб, пронизывающих все полы детского сада — теплоноситель. Между внешним и внутренним контуром находится теплообменник теплового насоса с закаченным в него хладагентом с низкой температурой кипения.

      Теплоноситель первичного «рассольного» контура поглощает тепло из грунта, увеличивая немного свою температуру. В испарителе теплообменника рассол (антифриз) передает тепловую энергию еще более холодному жидкому хладагенту, находящемуся под низким давлением. В этих условиях достаточно небольшой плюсовой температуры, чтобы хладагент перешел в газообразное состояние (испарился). Далее компрессор сильно сдавливает хладагент, вследствие чего температура его заметно увеличивается (около +70°C). Затем горячий хладагент подается в конденсатор, там он передает свою тепловую энергию более холодному теплоносителю, циркулирующему в отопительном контуре здания.

      Отдав часть тепла, охлажденный хладагент снова конденсируется (становится жидким), а дросселирующий клапан на границе между конденсатором и испарителем вновь понижает его давление. Затем цикл повторяется.

      Необходимо так же отметить, что здание детского сада построено по принципу «термоса»: керамзитобетонные стеновые панели и энергосберегающие окна с пятикамерным стеклопакетом – моментально понизили теплопотери на 25%.

      Итак, почему в этой энергоэффективной системе используется именно этиленгликоль, а не какой-нибудь другой антифриз, например пропиленгликоль или ацетат калия? Ответ прост и вытекает из физических свойств этиленгликоля. Во-первых, водный раствор этиленгликоля замерзает при температуре около -60°C в отличие от антифириза на основе ацетата калия, который имеет температуру замерзания ниже -5°C. Во-вторых, пропиленгликоль хоть и является экологически и токсилогически безопасным веществом, но его теплофизические свойства уступают этиленгликолю на 10-20%.

      Заключение

      В заключении нужно отметить преимущества данного проекта. Во-первых, подобная энергоэффективная схема позволила сократить затраты на отопление примерно на 45%. Фактически детский сад оплачивает счета только за электроэнергию. Конечно, традиционные радиаторы отопления установлены в детском саду, но они необходимы здесь «на всякий случай».

      Летом при температуре +25-27°C система тепловых насосов может автоматически переключаться на пассивное охлаждение помещения. Требуемое количество энергии на поддержание комфортного микроклимата сравнимо с затратами на одну лампу накаливания.

      Срок службы климатической установки достаточно долговечен, примерно 25-30 лет, а ежегодное профилактическое обслуживание не требует серьезных затрат.

      Теплоноситель на основе пропиленгликоля для систем отопления

      В качестве наполнителя нагревательных контуров и радиаторов применяется пропиленгликоль для отопления. В замкнутой системе энергоноситель не должен содержать примеси, химические вещества, щелочи и соли, способствующие коррозии. Использование готового теплоносителя повышает эксплуатационные характеристики котла, снижает разрушение внутренней поверхности труб, батарей.

      Особенности водяной системы отопления

      В состав входит нагревательный котел, сеть трубопроводов, батареи, циркуляционная помпа, коллекторы, внешние измерители температуры, термостаты. Вода проходит сквозь теплообменник агрегата, нагревается и по трубам поступает в радиаторы отапливаемого пространства. Энергоноситель отдает тепло через батареи и возвращается к источнику. Теплоноситель передвигается естественным способом или с помощью помпы.

      Отопление в доме бывает:

      • гравитационное (естественное);
      • принудительное.

      Работа управляется датчиками и термоголовками в автоматическом режиме или координируется вручную. В системе температура регулируется отдельно на всех приборах, что дает экономию топлива. В магистрали используется теплоноситель на основе пропиленгликоля, это продлевает срок службы оборудования и приборов. В трубах не откладывается осадок, поэтому отдается 80–90% тепла.

      Недостаток воды в том, что она замерзает в неотапливаемых строениях, разрывает коллекторы и радиаторы. Добавление соли проблему не решает, т. к. ведет к активизации коррозии, включение в состав теплоносителя антифриза повышает стоимость отопления.

      Описание пропиленгликоля

      Вещество активно используется в отопительных контурах по причине нетоксичности и безопасности. Представляет собой вязкую жидкость без цвета со свойственным запахом, которая применяется во многих отраслях хозяйствования.

      • раствор выдерживает без изменения состояния температуры от -40 до +100°С, для чистой субстанции рабочие параметры в диапазоне -60 – +185°С;
      • вещество содержит до 5% карбоксилатов, защищающих внутренность трубы от разрушения;
      • в состав гликоля для отопления вводят антикоррозионные, противонакипные и стабилизирующие добавки.

      Плотность пропиленгликоля меньше, чем у глицерина и этиленгликоля, но больше аналогичного показателя этанола. Вязкость субстанции больше, чем у спиртов и этиленгликоля, особенно в условиях холода. Производится вещество из окиси пропилена методом гидратации при +160 – +200°С под давлением в 1,6 Мпа.

      Реакция протекает в вакууме, в процессе выделяется:

      • пропиленгликоль – 85%;
      • дипропиленгликоль – 13%;
      • трипропиленгликоль – 2%.

      Готовый продукт хранится год без изменения качеств. После этого вещество делится на присадки и основу, что снижает теплоемкость пропиленгликоля.

      Технические характеристики

      Продукт находит применение в качестве основы для энергоносителя, с которым система не боится замерзания. Могут использоваться недорогие трубы, т. к. вещество содержит противокоррозионные компоненты.

      Температура замерзания в зависимости от концентрации пропиленгликоля:

      • содержится 54% вещества – энергоноситель замерзает при -40°С;
      • 48% – -30°С;
      • 39% – -20°С;
      • 25% – -15°С;
      • 15% – -5°С.

      В системе с веществом используются накопительные бойлеры, в отоплении с этиленгликолем применение таких агрегатов по инструкции не положено. Недостатком пропиленгликоля, как и этиленгликоля, считается повышенная текучесть, из-за чего жидкость проникает в щели, недоступные для воды. Сварка швов и соединения фитингами выполняются тщательно, чтобы исключить протечки.

      Теплоноситель пропиленгликоль используется только в системе с соответствующими техническими характеристиками, поэтому замена воды не всегда приводит к хорошим результатам. Производители радиаторов указывают в паспорте соответствие изделий тем или иным видам энергоносителя.

      Продукт смешивается с водой, спиртами, этиленом, кислотами, органикой карбонильной группы, аминами и азотосодержащими растворами.

      Достоинства и недостатки

      В воде при температуре свыше +75°С разлагаются карбонаты, откладывается накипь. Пропиленгликоль ингибирует процесс коррозии, идеально, если вещество добавляется в дистиллированную жидкость.

      Преимущества применения энергоносителя с присадками:

      • предохраняет отопительный контур и приборы от разрыва при морозе, замерзание происходит медленно с постепенным кристаллообразованием;
      • замерзшее вещество в трубах получает рабочую консистенцию при запуске отопительного агрегата;
      • второй по экологической безопасности теплоноситель после воды, длительное вдыхание паров, проглатывание, попадание на кожу не опасно;
      • при контакте с отделкой пола и стен не повреждает материалы;
      • способствует быстрому нагреву и медленному охлаждению системы;
      • снижает гидравлическое сопротивление и улучшает функционирование помпы в обратной ветке;
      • снижает потребление электричества при прокачке энергоносителя, благодаря невысокой плотности.

      К недостаткам относится высокая стоимость по сравнению с другими типами. Но дороговизна оправдывается минимизацией ремонтов, снижением количества топлива и трудовых затрат. Вещество не применяется в магистралях отопления, где есть оцинкованные элементы.

      Различия пропиленгликоля с этиленгликолем

      Этиленгликоль является органическим кислотосодержащим раствором, представителем многоатомных спиртов. Это бесцветная прозрачная жидкость маслянистой густоты без запаха. Попадание в организм вызывает токсическое отравление.

      Отличия от пропиленгликоля:

      • при замерзании объем воды с пропиленгликолем увеличивается только на 0,1%, а теплоноситель с этиленгликолем становится больше на 1,5%;
      • энергоноситель с пропиленгликолем выдерживает испарение воды из раствора и не замерзает до -60°С, этиленгликоль кристаллизируется при -13°С, глицерин – +17°С;
      • токсичность пропиленгликоля ЛД50 от 20 до 30 тыс. мг/кг, аналогичный показатель этиленгликоля – ЛД52 – 4700 мг/кг.

      Токсическое вещество быстро всасывается в организм, вызывает отек легких и сердечную недостаточность. Вещество не используется в открытых системах, т. к. проникает через кожу и при дыхании. Отработанный энергоноситель на основе этиленгликоля не выливается в грунт или канализацию, а отдается на переработку.

      Критерии выбора

      При определении вида учитывается рабочая температура, при которой энергоноситель существует определенное время без разложения. Свойства жидкостей описаны и позволяют сделать выбор присадки по характеристикам отопительной системы.

      • теплоемкость показывает объем энергоносителя, который обеспечит нужное тепло за единицу времени;
      • коррозионная активность говорит о необходимости выбора труб и батарей и о невозможности применения с некоторыми материалами;
      • вязкость определяет скорость передвижения жидкости, влияет на протечки, коэффициент передачи тепла, показатель меняется при нагревании или охлаждении;
      • показатель смазывания ограничивает использование некоторых материалов и конструкций разных механизмов, контактирующих с продуктом.

      Имеет значение безопасность для человека, способность вызывать ожоги, токсические отравления. Учитывается предел возгораемости, возможность порчи предметов при разливе из системы.

      Область применения и особенности использования пропиленгликоля

      Вещество применяют при выпуске полиэфирных ненасыщенных смол для строительной и автомобильной промышленности, в производстве алкидных мастик и полиуретанов. Продукт используется при изготовлении кремов, паст, моющих препаратов в косметическом и фармацевтическом производстве. Пищевая отрасль применяет пропиленгликоль для растворения добавок, использует бактерицидные и консервирующие характеристики.

      Вещество употребляется при производстве антифризов, тормозных, антиоблединительных жидкостей, служит пластификатором при выпуске поливиниловых пленок и целлофана. Пропиленгликоль заправляют в приборы для визуального дыма при сценических представлениях.

      Из-за потери жидкости в контуре часто есть необходимость смешивать этиленгликоль и пропиленгликоль в системе отопления. Перед заливкой нужно провести тест на совместимость. Эти вещества сочетаются, но производители применяют разные добавки, которые при соединении могут давать осадок. Идеальным решением является полное сливание теплоносителя перед новой заливкой.

      Энергоноситель на основе пропиленгликоля можно использовать в отопительных магистралях, которые частично проходят снаружи дома или на чердаке. Теплоноситель заливается в контур под давлением или вручную, но предварительно система проходит гидравлические испытания. В течение эксплуатации берутся пробы энергоносителя и проверяется пригодность в лаборатории.

    Ссылка на основную публикацию